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Abstract

The interactions of kinked interfacial cracks between two dissimilar isotropic media subjected to remote
tension are investigated in this paper[ The analytical technique consists of the dislocation modeling of the
kinks\ and the formulation generalizes previous models for a single crack to a model for two strongly
interacting cracks[ For two sets of Dundurs parameters\ it is shown that the dependence of the stress intensity
factors and the energy release rate on the geometrical and material parameters can be very complex due to
interaction and the asymmetry of the crack con_guration[ It is also shown that interaction can change the
kinking behavior completely\ and that discrepancies in the kink angle and the critical stress predictions of
the maximum energy release rate and the maximum mode I stress intensity factor criteria are a}ected by
interaction[ Þ 0887 Elsevier Science Ltd[ All rights reserved[

0[ Introduction

The problem of interfacial cracks in a two!dimensional bi!material solid has been studied since
the late 0849|s\ e[g[ Williams "0848# and Rice and Sih "0854#[ Further references can be found in
the review of Raju and Dattaguru "0884#[ More recently\ the kinking of an interfacial crack has
been investigated for dissimilar isotropic media "He and Hutchinson\ 0878^ Mukai et al[\ 0889#
and for dissimilar anisotropic media "Miller and Stock\ 0878#[ In contrast\ the kinking of a crack
in a homogeneous isotropic medium has been investigated at least since the 0869|s "e[g[ Lo\ 0867#[
The case of a kinked crack in a homogeneous anisotropic material can be found in the com!
paratively recent work of Obata et al[ "0878#[

The above!mentioned works on crack kinking focus on a single crack[ A voluminous amount
of work has been done for the interactions of straight cracks in two! and three!dimensional
homogeneous media\ both in_nite and _nite[ Multiple interfacial cracks also exist\ for instance\
due to imperfect bonding at the interface "e[g[ Kang\ 0883#[ They can be found in metalÐceramic
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bonded joints\ adhesive joints\ electronic devices\ and composite materials in general[ Conse!
quently\ quantitative predictions of their interactions and possible kinking is of great importance
in the understanding of the degradation of materials or structural function[ Attempts have been
made towards the analysis of the interaction between straight interfacial cracks "e[g[ Zhao and
Chen\ 0883# and between a straight interfacial crack and a straight subinterfacial crack "e[g[ Isida
and Noguchi\ 0883^ Zhao and Chen\ 0884#[ To the best knowledge of the authors\ investigations
on the interactions of interfacial kinked cracks have not been carried out\ however[ Recently\ Niu
and Wu "0886# attempted the study of the interactions of kinked\ branched and zigzag cracks in
homogeneous isotropic media subjected to remote tension[

There has also been a great deal of interest in the appropriate fracture criteria for predicting
kinking out of an interface[ He and Hutchinson "0878# used the maximum energy release rate
criterion[ Miller and Stock "0878# considered the maximum mode I stress intensity factor "SIF#
criterion[ Similarly\ Yuuki et al[ "0883# considered the maximum hoop stress criterion[ Kang
"0883# compared the predictions of the maximum energy release rate\ the maximum hoop stress
and the zero mode II SIF criteria with experimental data[ All these works considered a single
crack[ It is thus of theoretical and practical importance to investigate whether the predictions of
the di}erent criteria can be a}ected by the interactions between multiple kinked cracks on the
interface[

This paper investigates the interactions of kinked interfacial cracks lying between two dissimilar
in_nite isotropic media subjected to remote tension[ For simplicity\ two cracks\ not necessarily
equal\ are considered[ The plane strain condition is assumed[ The objectives are to "i# understand
the in~uence of strong interactions and crack con_guration asymmetry on the stress intensity
factors\ the energy release rate and the kink angle\ and "ii# study how these factors in~uence the
di}erences in the kink angle and critical stress predictions of two di}erent fracture criteria[ These
are the practical contributions of the present work[ The analytical technique makes use of the
dislocation modeling of kinks in the manner of Lo "0867#\ as is the case in He and Hutchinson
"0878#\ Obata et al[ "0878#\ Mukai et al[ "0889#\ and Niu and Wu "0886#[ The technique for treating
interfacial boundary conditions follows that of England "0854# and Clements "0860#\ as is the case
in Mukai et al[ "0889#[ The theoretical contribution of the present work is to generalize the single
interfacial kinked crack model to a model for two interfacial kinked cracks using the method of
dislocations\ and to emphasize that the key element responsible for the success of the method is
the exact satisfaction of the boundary conditions by all the interfacial parts of the kinked cracks[

The problem is formulated in Section 1\ and the potential function solutions are provided in
Section 2[ The integral equations associated with the kinks are developed in Section 3[ Numerical
results are presented in Section 4\ and the conclusions in Section 5[

1[ Formulation

1[0[ Problem statement

Figure 0"a# shows an in_nite body of two dissimilar isotropic media bonded along a straight
interface L¦L? except at the two crack locations\ where L is the union of the cracks and L? the
union of the bonded segments[ The elastic constants of the upper and lower media S0 and S1 are\
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Fig[ 0[ Schematic of the superposition technique for solving the problem of multiple kinked interfacial cracks in a bi!
material[

respectively\ m0\ k0 and m1\ k1\ where mj is the shear modulus and kj is related to the Poisson|s ratio
nj by kj � 2−3nj " j � 0\ 1# in plane strain[ Denote also Lý as the union of the two straight kinks in
Sj[ A rectangular frame xÐy is attached to the body with the x!axis lying along the interface[ The
interfacial parts of the cracks\ or the main cracks for brevity\ have their tips located at x � a0\ a1\
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a2 and a3\ where a3 × a2 × a1 × a0[ The lengths of the main cracks\ labelled 0 and 1\ are denoted
by 1c0 � a1−a0 and 1c1 � a3−a2\ respectively[ The kinks 0 and 1 have the lengths l0\ l1 and the
angles u0\ u1\ respectively[ The angles are measured positive counterclockwise from the x!direction[
The body is subjected to the remote stresses s�

yy\ s�
yx\ s�

xx0 and s�
xx1 under plane strain[ The objective

is to compute the stress intensity factors "SIFs# and the energy release rate of the kinks[

1[1[ Boundary conditions

The remote boundary conditions are speci_ed by the remote stresses s�
yy and s�

yx[ The x!direction
stresses are related to s�

yy "see Appendix A#[ On the interface\ the stress syy−isyx and displacement
gradient u?¦iv? boundary conditions\ where i � z−0\ are]

"syy−isyx#0−"syy−isyx#1 � 9 on L¦L?\ "0#

"syy−isyx#0 �"syy−isyx#1 � 9 on L\ "1#

and

"u?¦iv?#0−"u?¦iv?#1 � 9 on L?\ "2#

where the subscripts 0 and 1 refer to S0 and S1\ respectively[ The prime on the displacement u or v
denotes the derivative with respect to x[ For the kinks\ the stress boundary condition is]

sy?y?−isy?x? � 9 on Lý\ "3#

where x?Ðy? refers to the local reference frame of either kink[

1[2[ Superposition scheme to satisfy boundary conditions

To solve the problem in Section 1[0 subjected to the boundary conditions in Section 1[1\ the
superposition scheme illustrated in Fig[ 0 is used[ Figure 0"b# shows the replacement of the two
kinks by two initially unknown distributions of in_nitesimal edge dislocations[ Figure 0"c# shows
the decomposition of Fig[ 0"b# into three problems each with its associated problem[ In Problem
0\ the uncracked bi!material solid is subjected to the remote stresses[ In Problems 1 and 2\ the
uncracked body is internally stressed by the dislocations of kinks 0 and 1\ respectively[ Stresses
are induced at the trace of the imaginary main cracks in these problems[ In the associated problems\
the interfacial main cracks are subjected to the negative of the induced stresses[

Superposition of the three problems and the associated problems ensures that the main cracks
are traction free\ i[e[ "1# is satis_ed[ Moreover\ "0# and "2# are satis_ed in each of the six problems
so that they are also satis_ed after superposition[ The remote boundary conditions are satis_ed in
Problem 0\ and consequently no stresses should be induced at in_nity in the other _ve problems[
The potential functions in all six problems can be derived\ and it remains to ensure that the kinks
are traction free\ see "3#[ The stresses on the trace of the kinks in the six problems are derived from
the potentials\ and setting the sum of these stresses to zero yields a system of singular integral
equations containing the dislocation densities as unknown functions[
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2[ Potential functions

The stress and displacement _elds in an in_nite isotropic body can be derived from the well!
known complex potentials Fj"z# and Cj"z# of Muskhelishvili "0842#]

"syy−isyx# j � Fj"z#¦Fj"z#¦zF?j"z#¦Cj"z#\ "4#

"sxx¦syy# j � 1ðFj"z#¦Fj"z#Ł\ "5#

"u¦iv# j �
0

1mj $kj g
z

9

Fj"z# dz−g
z¹

9

CÞ j"z¹# dz¹−zFj"z#%\ "6#

where the subscript j � 0\ 1 identi_es the region Sj\ and z � x¦iy is the complex variable[ Also\ z¹\
Fj"z# and Cj"z# are the complex conjugates of z\ Fj"z# and Cj"z#\ respectively\ while CÞ j"z# � Cj"z¹#[
The prime denotes di}erentiation with respect to the argument of the potential[ In view of "2#\ "6#
is di}erentiated with respect to x]

"u?¦iv?# j �
0

1mj

ðkjFj"z#−Fj"z#−zF?j"z#−Cj"z#Ł[ "7#

Following England "0854#\ Clements "0860# and Mukai et al[ "0889#\ the analytic potentials
VS"z# � VSj"z# and VD"z# � VDj"z# where z $ Sj\ are de_ned in the entire region S � S0¦S1[ Also\
VSj"z# and VDj"z# are analytic in their respective regions[ Letting j\ k $ "0\ 1# but j � k\ these
potentials can be de_ned succintly as]

VSj"z# � Fj"z#−ðFÞ j"z#¦zFÞ?k"z#¦CÞk"z#Ł z $ Sj\ "8#

VDj"z# �
kj

1mj

Fj"z#¦
0

1mk

ðFÞk"z#¦zFÞ?k"z#¦CÞk"z#Ł z $ Sj[ "09#

The conditions of stress jump "syy−isyx#1−"syy−isyx#0 and displacement gradient jump
"u?¦iv?#1−"u?¦iv?#0 at the interface can then be conveniently expressed as VS1"x#−VS0"x# and
VD1"x#−VD0"x#\ respectively[ In the associated problems\ these conditions on the main cracks
correspond to Hilbert|s problems which can be solved using the method given in Muskhelishvili
"0842#[ The solutions VSj"z# and VDj"z# can then be used to determine Fj"z# and Cj"z# by inverting
"8# and "09#]

Fj"z# � Qj $
0

1mk

VSj"z#¦VDj"z#% z $ Sj\ "00#

Cj"z# � Qk $
−kk

1mk

VÞSk"z#¦VÞDk"z#%−Fj"z#−zF?j"z# z $ Sj\ "01#

where Qj � 1mjmk:"mj¦kjmk#[ The potentials of the three uncracked problems\ i[e[ "F�
j "z#\ C�

j "z##
associated with the remote loading\ and "F_

j "z#\ C_
j "z## associated with the internal loading of the

dislocations\ are available in the literature and are listed in Appendix A for completeness[ The
potentials of the associated problems\ distinguished by carets\ i[e[ "F
�

j "z#\ C
�
j "z##\ "F_

j "z#\
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C
_
j "z##\ "V
�

Sj "z#\ V
�
Dj"z## and "V
_

Sj"z#\ V
_
Dj"z## are derived as the solutions of Hilbert|s problems in

the following sub!sections[
It is emphasized that the key element responsible for the success of the present approach is the

exact satisfaction of the boundary conditions on all main cracks[ When the main cracks are very
close to each other\ it is extremely di.cult to satisfy their boundary conditions and hence obtain
an accurate estimate of the SIFs in the case of strong interaction[ Attempts to describe the very
strong interaction by approximate functions such as a series of orthogonal polynomials have met
with limited success[ Thus\ the theoretical contribution to this work is the derivation and solution
of the associated problems in such a manner that the exact satisfaction of all main crack boundary
conditions under the remote or dislocation loading is guaranteed a priori[

2[0[ Associated Problem 0

The potentials of Problem 0 are given in Appendix A[ In Associated Problem 0 "Fig[ 0"c##\ the
boundary conditions are the same as the overall boundary conditions given in "0#Ð"2#\ except that
"1# should be replaced by "syy−isyx#0 �"syy−isyx#1 � −f �"x# � −"s�

yy−is�
yx# on L[ In terms of

"V
�
Sj "z#\ V
�

Dj"z##\ the present boundary conditions can be rewritten as]

V
�
S0"x#−V
�

S1"x# � 9 on L¦L?\ "02#

s¼�
D0"x#¦mV
�

D1"x# �"V
�
D #¦"x#¦m"V
�

D #−"x# � −
"s�

yy−is�
yx#

Q0

on L\ "03#

V
�
D0"x#−V
�

D1"x# � 9 on L?\ "04#

where m � Q1:Q0 �"0¦b#:"0−b#[ The superscripts {{¦|| and {{−|| indicate the values of the
quantities as they approach the interface from within the S0 and S1 regions\ respectively[ Since
V
�

S "z# is analytic and bounded everywhere\ it must be equal to a constant by Liouville|s theorem[
Since the stresses vanish at in_nity in this associated problem\ the solution to "02# is V
�

S "z# � 9[
Note also that "03# is derived by substituting "00# and "01# into "4# and using the solution to "02#[

The solution to the non!homogeneous Hilbert|s problem as de_ned by "03# and "04# are "see
Muskhelishvili\ 0842#]

V
�
D "z# �

0
1piX"z# gL

X¦"x#"−f �"x#:Q0#
x−z

dx¦
P�"z#
X"z#

\ "05#

where 0:X"z# is the solution to the homogeneous problem ð"03# with zero on the right!hand sideŁ[
Also\ P�"z# � C�

0 z¦C�
1 is a polynomial of the _rst degree in z\ since X"z# has the degree 1 at

in_nity ðsee "16# belowŁ and the stresses must vanish at in_nity[ Using the method described in
Muskhelishvili "0842#\ X"z# is found to be

X"z# � z"z−a0#"z−a1#"z−a2#"z−a3# $
"z−a1#"z−a3#
"z−a0#"z−a2#%

ih

\ "06#

where h � log m:"1p#[ Equation "06# is given in Erdogan "0854# for an arbitrary number of
interfacial cracks[ Expanding X"z# about the point at in_nity in decreasing powers of z yields]
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X"z# � z1¦D0z¦D1¦O 0
0
z1� h"z#¦O 0

0
z1\ "07#

where

D0 � −
a0¦a1¦a2¦a3

1
¦i"a0¦a2−a1−a3#h\ "08#

D1 �
"a0¦a1¦a2¦a3#1−1"a1

0¦a1
1¦a1

2¦a1
3#

7
−

"a0−a1¦a2−a3#1

1
h1¦i"a1a3−a0a2#h[

"19#

Equation "06# is substituted into "05#[ Using the integration technique described in Muskhelishvili
"0842#\ the line integral over L is replaced by a contour integral on G\ where G is the union of the
contours around cracks 0 and 1[ Also\ since 0:X"z# is the solution to the homogeneous Hilbert|s
problem\ 0:X¦"x# � −m:X−"x#[ This is made use of when G is shrunk onto the upper and lower
faces of the cracks[ The following is obtained after the above operations]

V
�
D "z# �

0
1pi"0¦m#X"z# 0

−"s�
yy−is�

yx#
Q0 1 GG

X"x#
x−z

dx¦
C�

0 z¦C�
1

X"z#
\

�
0

"0¦m#X"z# 0
−"s�

yy−is�
yx#

Q0 1 ðX"z#−"z1¦D0z¦D1#Ł¦
C�

0 z¦C�
1

X"z#
\

�
s�

yy−is�
yx

Q0"0¦m# 0
z1

X"z#
−01¦

P�
E "z#

X"z#
\ "10#

where the contour integral of X"x#:"x−z# around G equals 1pi"X"z#−h"z## and h"z# is given in
"07#[ Also\ the polynomial

P�
E "z# � E�

0 z¦E�
1 "11#

combines P�"z# of "05# with other terms that arise from the integrations\ and for p � 0\ 1

E�
p � C�

p ¦
Dp"s�

yy−is�
yx#

Q0"0¦m#
[ "12#

Converting V
�
S "z# � 9 and "10# back to the Muskhelisvili potentials by the use of "00# and "01#\

the following expressions are obtained]

F
�
j �

mj−0

"0¦m#
"s�

yy−is�
yx# 0

z1

X"z#
−01¦

QjP
�
E "z#

X"z#
\ "13#

C
�
j "z# �

mk−0

0¦m
"s�

yy¦is�
yx# 0

z1

XÞ"z#
−01¦

QkP
�
E "z#

XÞ"z#
−F
�

j "z#−zF
?�j "z#\ "14#

where as before j\ k $ "0\ 1# but j � k[ To determine the complex constants E�
0 and E�

1 of P�
E "z#\
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the uniqueness of displacement around each main crack yields two equations in the two constants[
Consider the contour Gn\ n � 0\ 1\ around each main crack[ Using "6#\ the uniqueness of dis!
placement around each main crack can be expressed as]

GGn

d"u¦iv# � GGn

kj

1mj

F
�
j "z# dz−GGn

0
1mj

C
�
j "z¹# dz¹−GGn

0
1mj

d"zF
�
j "z## � 9[ "15#

Equation "15# can be replaced by line integrals in the intervals ða0\ a1Ł for n � 0 and ða2\ a3Ł for
n � 1 if Gn is shrunk onto the crack faces[ Noting that 0:X¦ � −m:X−"x# and z � z¹ � x on the
crack faces\ and that the upper part of Gn is in S0 while the lower part of Gn is in S1\ "15# reduces
to]

s�
yy−is�

yx

0¦m g
a1n

a1n−0

x1

X¦"x#
dx¦Q0 g

a1n

a1n−0

E�
0 x¦E�

1

X¦"x#
dx � 9[ "16#

In deriving the above equation\ the relation "k0−m#:1m0¦"0−mk1#:1m1 � 9 has been used[ The
solutions are]

E�
p �"−0#q s�

yy−is�
yx

"0¦m#Q0 0
B11B0q−B01B1q

B00B19−B10B091\ "17#

where q � p−0[ The complex integrals Bns "s � 9\ 0\ 1# are given by]

Bns � g
a1n

a1n−0

xs

X¦"x#
dx[ "18#

These integrals are computed numerically by GaussianÐJacobi quadrature[ Equations "13#Ð"14#
with "17#Ð"18# are the complete solutions to Associated Problem 0[

2[1[ Associated Problem 1 or 2

For Problem 1 or 2\ the potentials F_
j "z# and C_

j "z# due to an edge dislocation at z9 in S0 are
listed in Appendix A[ In Associated Problem 1 or 2 "see Fig[ 0"c##\ the boundary conditions are
the same as "02#Ð"04#\ except that −f �"x# � −"s�

yy−is�
yx# on the right side of "03# should be

replaced by the negative of the stresses due to a single dislocation\ i[e[]

−f_"x# � −A 0
0¦a

0−b

0
x−z9

¦
0¦a

0¦b

0

x−z91−AÞ 0
0¦a

0¦b

z9−z9

"x−z9#11\ "29#

where A � m0 eiu"ðurŁ¦iðuuŁ#:ip"k0¦0# characterizes the edge dislocation^ e is the exponential\ "r\ u#
the usual polar coordinates\ and ðurŁ\ ðuuŁ the displacement jumps in the radial and tangential
directions[ Also\ a and b are the Dundurs constants "see Appendix A#[ Equation "29# is obtained
by substituting F_

j "z# and C_
j "z# into "4# and adding the negative sign[ Note that in Fig[ 0"c# f_"x#

denotes the stresses due to the dislocation distribution rather than a single dislocation[ The
solutions to the Hilbert|s problems as derived from the boundary conditions are then V
_

S "z# � 9
and
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V
_
D"z# �

0
1piX"z# gL

X¦"x#"−f_"x#:Q0#
x−z

dx¦
P_"z#
X"z#

\ "20#

where P_"z# � C_
0z¦C_

1 \ and X"z# is the same as that given in "06#[ Substituting "29# into "20#\
the resulting integrals can be replaced by contour integrals in a manner similar to the replacement
of "05# by "10#[ The contour integrals are evaluated\ and the _nal result for V
_

D"z# is]

V
_
D"z# �

−1A
"0¦m#Q0 0

0¦a

0−b
F"z\ z9#¦

0¦a

0¦b
F"z\ z9#1

−
1AÞ

"0¦m#Q0 0
0¦a

0¦b
"z9−z9#G"z\ z9#1¦

P_
E "z#

X"z#
\ "21#

where

P_
E "z# � E_

0z¦E_
1 "22#

combines the polynomial P_"z# of "20# with other terms that arise from the integrations\ and

E_
0 � C_

0¦
1A

"0¦m#Q0

0¦a

0−b1
\ "23#

E_
1 � C_

1¦
A

"0¦m#Q0 0
0¦a

0−b
"z9¦D0#¦

0¦a

0¦b
"z9¦D0#1¦

AÞ
"0¦m#Q0 0

0¦a

0¦b
"z9−z9#1[ "24#

In "24#\ D0 is given in "08#[ Furthermore\

F"z\ z9# �
0

1"z−z9#
−

0
1"z−z9#

X"z9#
X"z#

\ "25#

G"z\ z9# �
1F"z\ z9#

1z9

�
0

1"z−z9#1
−

0

1"z−z9#

X"z9#
X"z# 0

0

z−z9

¦W"z9#1\ "26#

where

W"z9# �
0
1

s
3

q�0

0

z9−aq

¦ih s
3

q�0

"−0#q

z9−aq

[ "27#

Note that W"z9# arises from the di}erentiation of X"z9#\ i[e[ d ðX"z9#Ł:dz9 � W"z9#X"z9#[
Converting V
_

S "z# � 9 and "21# back to the Muskhelishvili potentials by the use of "00# and "01#\
the following expressions are obtained]
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F
_
0 "z# �

−1A
0¦m 0

0¦a

0−b
F"z\ z9#¦

0¦a

0¦b
F"z\ z9#1−

1AÞ

0¦m
0¦a

0¦b
"z9−z9#G"z\ z9#¦ Q0

P_
E "z#

X"z#
\

"28#

C
_
0 "z#¦

d
dz

"zF
_
0 "z## �

−1mAÞ
0¦m 0

0¦a

0−b
F"z¹\ z9#¦

0¦a

0¦b
F"z¹\ z9#1

−
1mA
0¦m

0¦a

0¦b
"z9−z9#G"z¹\ z9#¦Q1

P_
E "z¹#

X"z¹#
\ "39#

F
_
1 "z# � mF
_

0 "z#\ "30#

C
_
1 "z#¦

d
dz

"zF
_
1 "z## �

0
m $C
_

0 "z#¦
d
dz

"zF
_
0 "z##%[ "31#

Two sets of complex constants E_
0 and E_

1 can be determined for P_
E "z#[ The _rst set "E_0

0 \ E_0
1 #

corresponds to the location of z9 on the kink associated with crack 0 "Problem 1#\ while the second
set "E_1

0 \ E_1
1 # to the location of z9 on the kink associated with crack 1 "Problem 2#[ As in "15#\

d"u¦iv# is integrated around two contours\ resulting in two equations[
To determine "E_0

0 \ E_0
1 #\ the contour G0 encloses main crack 0 and the trace of the associated

kink\ including the dislocation at z9 on the trace\ while the contour G1 encloses main crack 1 only[
Taking steps similar to those leading to "16#\ G0 is shrunk onto the faces of main crack 0 and the
associated kink\ while G1 is shrunk onto the faces of main crack 1[ The integration around the
trace of the kink is zero since all the integrands are analytic on the kink including at z9[ If the
integrations stated in "15# are carried out using the potentials of "28#Ð"31#\ the following is
obtained]
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a1n

a1n−0

0

X¦"x#
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� 6
Api"k0¦0#m0 for n � 0\

9 for n � 1\
"32#

where n � 0\ 1 identi_es the contour Gn\ and Api"k0¦0#:m0 � eiu "ðurŁ¦iðuuŁ# is the dislocation
content within G0[ To determine E_1

0 \ E_1
1 \ an equation similar to "32# can be obtained\ with the

di}erence that G0 encloses main crack 0 and has no net dislocation content whereas G1 encloses
main crack 1 and the dislocation at z9 on the trace of the associated kink[ De_ning N � n¦"−0#n¦0

and recalling that q � p−0\ the explicit forms for the two sets of parameters are]
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E_n
p �

"−0#q
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where the complex integrals

Dns"z9# � g
a1n

a1n−0

0

X¦"x#"x−z9#s
dx "34#

are evaluated numerically for s � 0\ 1 by GaussianÐJacobi quadrature[ The integrals Bns are given
in "18#[ Equations "28#Ð"31# with "33#Ð"34# are the complete solutions to Associated Problem 1 or
2[ Equations "29#Ð"34# have been derived on the assumption that z9 $ S0[ When z9 $ S1\ it is only
necessary to replace "a\ b# by "−a\ −b# in these equations\ and to replace Api"k0¦0#:m0 in "32#Ð
"33# by Api"k1¦0#:m1[ The exception is that the sign of b in m �"0¦b#:"0−b# is not changed[

For a distribution of dislocations\ A is interpreted as a dislocation density and the corresponding
solutions can be obtained by integrating the solutions for a single dislocation over the positions
occupied by the dislocation group[

3[ Integral equations\ stress intensity factors and energy release rate

To satisfy "3#\ the normal and shear stresses at the kink locations in all problems are super!
imposed and set equal to zero[ Figure 0 can be used as an example\ in which a kink is joined to
the inner tip of each interfacial crack[ Let z0 and z1 denote the positions along kinks 0 and 1\
respectively\ and similarly z90 and z91 the positions of the dislocations on kinks 0 and 1[ If t denotes
the position along either kink with origin at the kink knee\ then the superimposition of the stresses
results in the following two complex\ or four real\ integral equations for n � 0\ 1]

g
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ru "zn#Ł � 9[ "35#
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The superscripts on the stress components indicate the potential functions from which they should
be computed[ The three sets of rectangular brackets correspond to Problems 1\ 2 and 0\ respectively[
The last two terms within each set of brackets correspond to the associated problem[ It can be
easily veri_ed that the equations are of the singular Cauchy type and the two unknown functions
are the dislocation densities in kinks 0 and 1\ i[e[ An\ n � 0\ 1[

Equation "35# is solved by the method of piecewise polynomials "Gerasoulis\ 0871#[ The method
has been used for solving kinked crack problems "He and Hutchinson\ 0878^ Obata et al[\ 0878^
Mukai et al[\ 0889^ Niu and Wu\ 0886#[ Essentially\ each dislocation density An"t?# is written as
the product of a weight function w"t?# and a regular function 8n"t?#\ where t?"−0 ¾ t? ¾ 0# describes
the normalized position along either kink[ The values t? � 0 and t? � −0 denote positions at the
kink tip and the kink knee\ respectively[ Additional conditions 8n"−0# � 9 are used to solve the
problem[ Dividing the normalized interval ð−0\ 0Ł into R intervals\ the use of R collocation points
within the intervals generates R linear algebraic equations for each integral equation[ Together
with the additional conditions\ a system of 3"R¦0# linear algebraic equations is obtained with
8n"t?# at the boundary points of the R intervals as unknowns[

After solving the algebraic equations\ the mode I and mode II SIFs "KI\ KII# of kink n are easily
calculated from the stress _eld around the kink tip[ The formula is "see also Lo\ 0867#]

KI¦iKII �"p#2:1"1l#0:1 eiun8n"0#\ "36#

where un is the orientation of the kink[ The energy release rate under the plane strain condition is
given by the classical formula

G �
0¦kj

7mj

"K1
I ¦K1

II#[ "37#

To compare the numerical results with previously published results\ "37# is normalized by the
energy release rate G9 at the tip of an equivalent straight interfacial crack of total length 1c? � 1c¦l[
The expression for G9 is "see\ e[g[ Malyshev and Salganik\ 0854#]

G9 � 0
0¦k0

7m0

¦
0¦k1

7m1 1
"0¦3h1#ð"s�

yy#1¦"s�
yx#1Łpc?

1 cosh1"ph#
[ "38#

4[ Numerical results

A remote tensile stress s is applied in the direction perpendicular to the main cracks[ More
complicated loadings involving remote shear and tension are not considered^ the objective is to
show that even under remote tension complex phenomena exist due to crack interactions[

The geometrical parameters 1c\ l and 1d denote\ respectively\ the length of the main crack\ the
length of the kink\ and the distance between the inner tips of the main cracks[ A distance parameter
d �"d−l#:"1c¦d# is used to characterize the interaction[ Unless otherwise stated\ the two cracks
are arranged symmetrically about the y!axis[ When the cracks are unequal\ subscripts are used to
distinguish between them\ e[g[ 1c0\ 1c1\ etc[

All numerical integrations are performed with the 49!point GaussianÐJacobi quadrature
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Table 0[
Stress intensity factors\ K	I � KI:s

�
yyzp"c¦l:1#\ of two interacting straight cracks in a homogeneous material with no

interface[ The approximate solutions are obtained by treating the light parts of the straight cracks as dislocation
distributions[ The solutions improve with an increase in R\ i[e[ the number of collocation points used to solve the
governing integral equations

Exact
solutions c:l � 0 c:l � 099
Erdogan

d � ð"d−l#:"1c¦d#Ł "0851# R � 05 R � 53 R � 017 R � 05 R � 53 R � 017

9[9990 02[236 4[204 7[481 09[257 02[979 02[299 02[207
9[990 4[284 3[264 4[193 4[220 4[256 4[271 4[273
9[90 1[261 1[238 1[269 1[260 1[251 1[256 1[257
9[91 0[894 0[787 0[893 0[893 0[786 0[890 0[891
9[94 0[362 0[360 0[361 0[362 0[356 0[360 0[360
9[0 0[144 0[143 0[144 0[144 0[149 0[142 0[143
9[1 0[001 0[000 0[001 0[001 0[097 0[000 0[000
9[88 0[999 9[888 0[999 0[999 9[885 9[888 9[888

formula[ All solutions of the integral equations\ except for some results in Section 4[0[0 below\ are
generated with R in the range 53 ¾ R ¾ 139[

4[0[ Test cases

4[0[0[ Two interactin` strai`ht cracks in an isotropic homo`eneous solid
The SIF solutions for two identical straight cracks each joined by a {{kink|| of 9 or 079> angle in
an isotropic homogeneous solid are compared to the exact solutions of Erdogan "0851#[ The
comparison is shown in Table 0\ which contains three sets of normalized KI solutions for various
crack separations] "i# the exact solutions obtained by treating each crack as an uninterrupted
straight crack\ "ii# the approximate solutions obtained by treating each crack as a main crack
joined by a kink with c:l � 0\ and "iii# the approximate solutions obtained as in "ii# but with
c:l � 099[ The approximate solutions\ obtained using k0 � k1\ m0 � m1 and R � 05\ 53\ 017\ agree
well with the exact solutions[ The errors are less than 0) when d is greater than or equal to 9[90[
For d � 9[990 and 9[9990\ the approximate solutions tend towards the exact solutions of 4[284
and 02[236 "in three decimal places# as R increases[ The best approximate solution of 02[207 for
d � 9[9990\ computed using c:l � 099 and R � 017\ represents an error of approximately 9[1)[
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The comparison shows that the kinked interfacial crack model\ when specialized for the case of
strongly interacting straight cracks in an isotropic homogeneous solid\ produces accurate SIFs[
The accuracy is excellent provided R is su.ciently large[ When the kink angles are not zero\ the
current model predictions agree with the results of Lo "0867# for a single kinked crack and also
those of Niu and Wu "0886# for two strongly interacting kinked cracks[

4[0[1[ Two kinked interfacial cracks located at a lar`e distance from each other
When there exists an interface separating two materials\ the current results agree with those
presented in Mukai et al[ "0889# for a single kinked interfacial crack[ An example is provided here
in which two identical kinked cracks are separated by a very large distance "d � 0Ð09−8#[ Figure 1
plots the normalized energy release rate G	 � G:G9 vs the kink angle u for l:c � 9[990 and various
values of a\ b[ Also plotted is G	 vs u for a � 9[4\ b � 9[03175 and l:c � 9[990\ 9[90\ 9[0\ 0[ The
symbols in the _gure indicate the results of Mukai et al[ "0889#\ while the full lines indicate the
current model predictions[ The two sets of results agree well[

4[1[ Symmetric con_`uration

Consider two identical kinked interfacial cracks located symmetrically about the y!axis[ The
kinks are in_nitesimally small compared to the main cracks[ The parameters used are
m10 � m1:m0 � 2\ 099\ n0 � n1 � 9[2[ These correspond to "a\ b# � 9[4\ 9[03175 and "a\ b# � 9[87919\
9[17995\ respectively[ Also\ l:c � 9[990 and d � 9[88\ 9[0\ 9[90\ 9[990\ 9[9990[ Since m1 × m0\ S1 and
S0 are for convenience called {{sti}|| and {{compliant|| materials[ The SIFs are normalized\ i[e[
K	I � KI:s

�
yyzpc?\ K	II � KII:s

�
yyzpc?[ Due to symmetry\ it is su.cient to plot the SIFs and the

energy release rate of kink 0[ The mode mixity is de_ned as g � tan−0 "KII:KI#[ Results for kinks
almost parallel to the interface are omitted due to numerical inaccuracies[

4[1[0[ Effect of interaction on SIFs\ ener`y release rate\ mode mixity and critical kink an`le
Figure 2 plots K	I\ K	II and G	 vs the kink angle u for m10 � 2[ As expected\ they generally increase in
magnitude as d decreases[ Local maxima of the K	IÐu curves exist for positive u\ i[e[ in the compliant
material S0[ These local K	I maxima are\ however\ less than the maximum values of K	I in the sti}
material S1[ In contrast\ the G	 values in S0\ which also display maxima\ are greater than the
maximum G	 values in S1[ The K	IIÐu curves possess zeroes in S0[ Assuming for the time being that
the cracks kink into the compliant material\ then the critical kink angle ucr\ whether predicted by
the local maximum KI criterion\ the maximum G criterion or the KII � 9 criterion\ decreases with
increase in 0:d[ Figure 3 shows that as 0:d increases through four orders of magnitude\ ucr decreases
from ½24Ð½09> for m10 � 2\ and from ½44Ð½04> for m10 � 099[ Furthermore\ the variations of
the mode mixity g with u and d are also shown in Fig[ 4 for m10 � 2[ If the kinks are in S0 and the
interaction increases at a given kink angle\ the mode mixity increases towards mode I "g � 9># if
the kink angle is small "³ ½29>#\ but increases towards node II "g � 89># if the kink angle is large
"× ½29>#[ When the kinks are in S1\ an increase in interaction leads to the increase of the mode
mixity towards mode I[

The _rst implication is that interaction between the interfacial cracks reduces the critical kink
angle[ This result is intuitive since the attraction between the interfacial crack reduces the tendency
to kink out of plane[ The tendency to kink\ however\ is stronger than the tendency for the interfacial
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Fig[ 1[ Comparison of the energy release rates computed using a single crack model and a crack interaction model[

cracks to join each other along the interface\ since _nite critical kink angles are predicted even
when the interfacial crack tips are separated by a distance as small as 1d � 9[9913c "d � 9[9990#[
The second implication is that the critical kink angle predictions of all three criteria agree to within
ten degrees and interaction does not cause signi_cant di}erences between the predictions[ Finally\
the interaction may have opposite e}ects on the mode mixity in the compliant and sti} materials[
It increases the mode I mixity in the sti} material\ but reduced it in the compliant material if the
kink angle is su.ciently large[
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Fig[ 2[ Dependence of the SIFs and the energy release rate on the distance parameter d of two kinked interfacial cracks
which are symmetric about the y!axis[
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Fig[ 3[ Decrease of the critical angle with increase in interaction strength\ assuming that kinking occurs in the compliant
material[

4[1[1[ Consideration of fracture tou`hness
It is necessary to consider the fracture toughness of both materials and the interface[ Since the
materials are isotropic\ the critical energy release rate\ GC\ is related to the critical mode I SIF\ KIC

"plane strain fracture toughness#\ by GC � K1
IC"0−n1#:E for each material\ where E and n are\
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Fig[ 4[ In~uence of the interaction strength on the mode mixity of a kink in the two parts of the bi!material[

respectively\ the Young|s modulus and the Poisson|s ratio[ Kinking into S0 is unlikely to occur
compared to kinking into S1 or interfacial fracture if the following equation is satis_ed]

KImax\1

KImax\0

×
KIC\1

KIC\0

\ or
Gmax\1

Gmax\0

×
GC\1

GC\0

\ "49#

where KImax\1:KImax\0 and KIC\1:KIC\0 denote\ respectively\ the ratio of the maximum mode I SIFs
and the ratio of the plane strain fracture toughnesses of the two materials\ and the ratios Gmax\1:Gmax\0

and GC\1:GC\0 are similarly de_ned[ To simplify the discussion\ it is assumed that the interface is at
least as tough as the less tough material[

The maximum KI criterion has been regarded as a possible method for predicting the fracture
angles of interfacial cracks "Miller and Stock\ 0878#[ So has the maximum G criterion "He and
Hutchinson\ 0878#[ It is useful to compare the predictions of both criteria and to investigate if
interaction can lead to discrepancies in the predictions[ For this purpose consider the case of
KIC\1:KIC\0 � 099 MPa m0:1:69 MPa m0:1 � 0[32 and m10 � 79[6 GPa:15[8 GPa � 2 "e[g[ an alumi!
numÐnickel or aluminumÐsteel bi!material#[ Assuming that the Poisson|s ratios of the metals are
9[2\ the corresponding ratio GC\1:GC\0 � 32[2 kJm−1:52[6 kJm−1 � 9[57[

Making use of Fig[ 2 in which m10 � 2\ Fig[ 5 plots KImax\1:KImax\0 and Gmax\1:Gmax\0 as a function
of log09"0:d#[ The values of K0max\1 and Gmax\1 are estimated from the values at u ½ 9>[ It can be
seen that 0[24 ³ KImax\1:KImax\0 ³ 0[44 due to interaction[ If KIC\1:KIC\0 falls within the range of
KImax\1:KImax\0\ whether the crack extends by kinking into S0 or S1 or by self!similar growth depends
on the interaction strength[ In the present case of KIC\1:KIC\0 � 0[32\ KImax\1:KImax\0 is smaller
than KIC\1:KIC\0 for log09"0:d# ³ ½0[14 but larger than KIC\1:KIC\0 for log09"0:d# × ½ 0[14[ Thus\
according to the maximum KI criterion weakly interacting cracks may kink into the compliant
material whereas strongly interacting cracks may either extend self!similarly or kink into the sti}
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Fig[ 5[ Variation of the ratio of the maximum mode I SIFs and the ratio of the maximum energy release rates in the two
materials with the interaction strength[

material instead[ Since K	I appears to reach its maximum in S1 at the interface in the case of m10 � 2\
self!similar extension rather than kinking into S1 is likely[ The latter scenario may be possible\
however\ if m10 assumes another value\ since further results "not included here# indicate that K	I

reaches its maximum at some non!zero angle in S1 if m10 � 099[
Contrary to the results of Fig[ 3\ the maximum G and maximum KI criteria to not always agree

closely in the prediction of ucr[ In the example above\ 9[64 ³ Gmax\1:Gmax\0 ³ 9[74 due to interaction
"see Fig[ 5#[ The ratio GC\1:GC\0 � 9[57 is\ however\ always smaller than Gmax\1:Gmax\0[ Since Gmax\1

occurs at u � 9>\ the interfacial cracks tend to extend self!similarly irrespective of the interaction
strength[ In other words\ the maximum G criterion predicts ucr � 9> regardless of interaction\ while
the maximum KI criterion predicts ucr ½ 21> for weakly interacting cracks but ucr � 9> for strongly
interacting cracks[ The upper plot of Fig[ 6 summarizes the above discussion by plotting ucr as
predicted by the two criteria against log09"0:d#[ It is noted that even though the combination of
Gmax\0 × Gmax\1 and KIC\1 × KIC\0 encourages kinking into the compliant material\ this does not
occur according to the maximum G criterion since the smaller shear modulus of the compliant
material results in GC\0 × GC\1[

The lower plot of Fig[ 6 compares the critical remote {{stresses|| "containing the factor zpc?# as
predicted by the two criteria[ The maximum G criterion is satis_ed at a lower critical stress than
the maximum KI criterion\ whether the discrepancies in ucr are large or small[ Further work
substantiated by experimental investigation\ however\ is necessary to answer the question as to
which of the two predictions is correct[

In general\ the relevant parameters a}ecting the kinking behavior are many and may have
signi_cant variability[ For instance\ the ranges of KImax\1:KImax\0 and Gmax\1:Gmax\0 depend on the
Dundurs parameters and the crack con_guration\ and there can be signi_cant variability of KIC or
GC due to di}erences in material microstructure "alloying elements\ impurities# or material types
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Fig[ 6[ E}ect of interaction on the critical angle and the critical stress predictions\ and discrepancies between the
maximum KI criterion and the maximum G criterion[ The crack con_guration is symmetric[

"metalÐceramic or other bi!materials#[ Considering the di}erences in material microstructure\ the
range of KIC for steel can be 49Ð069 MPa m0:1[ For aluminum the range can be 09Ð69 MPa m0:1[
Thus\ KIC\1:KIC\0 lies between 9[61 and 06\ while GC\1:GC\0 lies between 9[06 and 85[2[ For the ranges
of KImax\1:KImax\0 and Gmax\1:Gmax\0 predicted\ there will be material combinations such that kinking
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always occurs in the sti} or compliant material regardless of the interaction\ or kinking may occur
in the sti} or compliant material depending on the interaction[

4[2[ Asymmetric con_`uration

Consider two unequal kinked interfacial cracks located on either side of the y!axis[ The par!
ameters considered are m10 � m1:m0 � 2\ 099\ n0 � n1 � 9[2\ and d � 9[88\ 9[90\ 9[990[

4[2[0[ Unequal main cracks with equal kinks
The e}ect of unequal main cracks on equal kinks is examined[ For this purpose\ choose c0:c1 � 4\
and l0:c1 � l1:c1 � 9[990[ The main crack on the left "crack 0# is _ve times longer than the one on
the right "crack 1#\ although the kink lengths are the same[ The kink angles satisfy the relation
u0¦u1 � 079>\ and the variable u � u0 is used in the _gures[ Figure 7 plots K	I\ K	II and G	 vs u for
the case of m10 � 099 and d �"d−l1#:"1c1¦d# � 9[88\ 9[90[ The factor of non!dimensionalization
for the SIFs is s�

yyzpc?1[ For G it is G91\ given by "38# with c? � c?1[
In the compliant material\ K	I and G	 of kink 0 are generally greater than those of kink 1 for

d � 9[88 and 9[90[ In the sti} material\ although K	0 and G	 of kink 0 are greater than those of kink
1 for d � 9[88\ they are smaller for d � 9[90[ This represents an anomalous e}ect due to interaction\
and may have the following consequence[ Suppose that "49# is satis_ed whether the maximum KI

or the maximum G criterion is used\ i[e[ kinking into the compliant material S0 is not likely[ In the
case of very weak interaction\ both criteria will then predict that kink extension from the long
main crack will occur parallel to the interface before a similar extension can occur from the short
main crack[ The reverse occurs in the case of strong interaction\ i[e[ the short main crack will
extend _rst\ contrary to intuition[ The discussion here\ however\ is subjected to the restriction that
u0¦u1 � 079>[ A de_nite conclusion is possible only if a comprehensive search is carried out for
the combination of u0 and u1 that yields the maximum K	I or G	[

4[2[1[ Equal main cracks with unequal kinks
The extension of an in_nitesimal kink in the presence of a _nite kink is examined[ For this purpose\
choose c0:c1 � 0\ l0:c1 � 9[990\ and l1:c1 � 9[0[ Kink 0 is a hundred times shorter than kink 1[ Also\
u1 � 049> while u0 is allowed to vary between −89 and 89>[ Figure 8 plots K	I\ K	II and G	 vs u0 for
the case of m10 � 2 and d �"d−l0#:"1c0¦d# � 9[88\ 9[90\ 9[990[ Unlike Fig[ 7\ the non!dimen!
sionalization factors consist of the length c?0[

In contrast to the previous results\ the interaction of the _nite and in_nitesimal kinks causes
complex shielding of the SIFs and the energy release rates[ As d decreases from 9[88Ð9[990\ the
_nite kink _rst experiences an increase in K	I and G	 but subsequently a considerable decrease of
these parameters at d � 9[990[ This implies that the shielding due to the _nite kink dominates over
the ampli_cation associated with a decrease in d[ Also\ although the angle of the _nite kink is held
_xed\ K	I\ K	II and G	 of the _nite kink all experience jumps in various degrees as the in_nitesimal
kink crosses the material interface[

Consider next the in_nitesimal kink[ It is interesting to observe that the shielding of K	I and G	
of the in_nitesimal kink is less than that of the considerably longer _nite kink for almost all u0[
Furthermore\ the K	I and G	 curves for the various values of d may intersect each other[ The
maximum values of K	I and G	 for d � 9[990 are smaller than the corresponding maximum values
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Fig[ 7[ Dependence of the SIFs and the energy release rate on the distance parameter d of two kinked interfacial cracks
containing unequal interfacial parts and equal kinks[

for d � 9[90\ whether the in_nitesimal kink is in S0 or S1[ Also\ the maxima of K	I and G	 in S0 occur
at increasingly larger u0 as d decreases[ These anomalies are not present in the symmetric case or
in the asymmetric case of Section 4[2[0[
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Fig[ 8[ Dependence of the SIFs and the energy release rate on the distance parameter d of two kinked
interfacial cracks containing equal interfacial parts and unequal kinks[
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The complex curves of Fig[ 8 result in fracture predictions quite di}erent from the symmetric
case[ A most obvious di}erence is that it is possible for ucr to increase with 0:d if the in_nitesimal
kink extends into S0[ Second\ the critical stress to cause extension of the in_nitesimal kink is lower
in the case of d � 9[90 compared to the case of d � 9[990\ regardless of whether the kink extends
into S0 or S1[ Third\ the _nite kink generally experiences K	I and G	 values smaller than the maxima
experienced by the in_nitesimal kink\ implying that the in_nitesimal kink will extend before the
_nite kink can do so[

When the fracture toughnesses are taken into account\ there can be signi_cant discrepancies
between the predictions of the maximum KI and the maximum G criterion[ Using the same
parameters as in Section 4[1[1\ i[e[\ KIC\1:KIC\0 � 0[32 and GC\1:GC\0 � 9[57\ the predictions of the
critical angles and stresses are shown in Fig[ 09[ For the critical angles\ the two criteria agree
approximately when d � 9[90 and 9[990 and disagree entirely for d � 9[88 and 9[0[ Unlike the
symmetric case\ both criteria predict that the in_nitesimal kink tends to leave the interface and
approach the _nite kink when d � 9[90 and 9[990[ For the critical stresses\ the largest discrepancy\
which is of the order of 09)\ also occurs at the larger values of d\ i[e[ 9[88 and 9[0[ Similar to the
symmetric case\ the stresses predicted by the maximum G criterion are smaller than those predicted
by the maximum KI criterion[

5[ Conclusions

A model for two strongly interacting kinked interfacial cracks lying between two dissimilar
isotropic materials is generalized from the previous model for a single crack[ For two sets of
Dundurs parameters "corresponding to m10 � 2\ 099\ n0 � n1 � 9[2#\ a symmetric and an asymmetric
crack con_guration under the plane strain conditions are studied[ The focus is on the e}ect of
interaction on the stress intensity factors\ the energy release rates\ and the predictions of the kink
angles and the critical stresses using the maximum G and the maximum KI criteria[ The remote
loading consists of a tensile stress normal to the material interface[ Numerical examples are
given using the following fracture toughness ratio of the two materials] KIC\1:KIC\0 � 0[32 and
correspondingly GC\1:GC\0 � 9[57[ The interface toughness is assumed to be at least as tough as the
less tough of the two materials[

For the symmetric crack con_guration\ the kink angle corresponding to maximum KI or G in
the compliant material decreases with interaction[ For a kink of a given angle in the sti} material\
interaction increases the mode I mixity[ In the compliant material\ the general trend is for inter!
action to also increase the mode I mixity if the kink angles are small\ but to reduce it if the kink
angles are large[ When the crack con_guration is asymmetric\ strong interaction may introduce
complex e}ects[ For instance\ when an in_nitesimal kink interacts with a _nite kink\ the angle of
the in_nitesimal kink at which KI or G reaches its maximum in the compliant material increases
with interaction[ Generally\ the _nite kink also experiences greater shielding in both the stress
intensity factors and the energy release rate than the in_nitesimal kink[

It is shown that interaction can change the kinking behavior completely\ i[e[ from kinking into
the compliant material to extending along the interface[ These exist\ however\ discrepancies in the
predictions of the maximum G and the maximum KI criteria[ When there is no interaction or only
moderate interaction\ the interface cracks in the symmetric con_guration kink into the compliant
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Fig[ 09[ E}ect of interaction on the critical angle and the critical stress predictions\ and discrepancies between the
maximum KI criterion and the maximum G criterion[ The asymmetric crack con_guration consists of equal interfacial
parts and unequal kinks[
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material according to the maximum KI criterion while they remain in the interface according to
the maximum G criterion[ For the asymmetric con_guration consisting of equal main cracks\ one
with an in_nitesimal kink and the other a _nite kink\ a similar contradiction is predicted for the
crack with the in_nitesimal kink[ On the other hand\ when strong interaction exists both criteria
predict that the kinks in the symmetric con_guration stay in the interface\ while the kink in the
asymmetric con_guration leaves the interface to approach the other kink[ In general\ the details
of the discrepancies will be dependent on the crack con_guration\ the Dundurs parameters\ and
the ratios of the fracture toughnesses[
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Appendix A

For Problem 0\ the potentials F�
j "z# and C�

j "z# " j � 0\ 1# due to the remote loading are
independent of position z[ In view of "4# and "5#\ they can be written as]

F�
0 �

s�
yy¦s�

xx0

3
\ "A0#

C�
0 �

s�
yy−s�

xx0

1
¦is�

yx\ "A1#
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where a and b are Dundurs| parameters]

a �
m1"k0¦0#−m0"k1¦0#
m1"k0¦0#¦m0"k1¦0#

\ b �
m1"k0−0#−m0"k1−0#
m1"k0¦0#¦m0"k1¦0#

[ "A4#

In "A0#Ð"A3#\ it can be shown by continuity of the displacement gradient across the interface that
s�

xx0 is related to s�
xx1\ i[e[]

s�
xx1 �

3b−1a

0−a
s�

yy¦
0¦a

0−a
s�

xx0\ "A5#

where it is further assumed that s�
xx1 � −s�

xx0[ The above equation implies that the x!direction
stresses cannot be speci_ed independently if constant potentials are assumed[
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For Problem 1 or 2\ the potentials F_
j "z# and C_

j "z# due to an edge dislocation at z9 in S0 can be
written as "see\ e[g[ Mukai et al[\ 0889#]

F_
0 "z# �

A
z−z9
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a−b

0¦b

A

z−z9

¦
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0¦b
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dz $z 0
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"z−z9#1
¦

0¦a
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AÞ
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−
d
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z−z91%\ "A09#

where A � m0 eiu"ðurŁ¦iðuuŁ#:ip"k0¦0# characterizes the edge dislocation^ e is the exponential\ "r\ u#
the usual polar coordinates\ and ðurŁ\ ðuuŁ the displacement jumps in the radial and tangential
directions[ Also\ the overhead bar denotes the complex conjugate[
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