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Abstract

The interactions of kinked interfacial cracks between two dissimilar isotropic media subjected to remote
tension are investigated in this paper. The analytical technique consists of the dislocation modeling of the
kinks, and the formulation generalizes previous models for a single crack to a model for two strongly
interacting cracks. For two sets of Dundurs parameters, it is shown that the dependence of the stress intensity
factors and the energy release rate on the geometrical and material parameters can be very complex due to
interaction and the asymmetry of the crack configuration. It is also shown that interaction can change the
kinking behavior completely, and that discrepancies in the kink angle and the critical stress predictions of
the maximum energy release rate and the maximum mode I stress intensity factor criteria are affected by
interaction. © 1998 Elsevier Science Ltd. All rights reserved.

1. Introduction

The problem of interfacial cracks in a two-dimensional bi-material solid has been studied since
the late 1950’s, e.g. Williams (1959) and Rice and Sih (1965). Further references can be found in
the review of Raju and Dattaguru (1995). More recently, the kinking of an interfacial crack has
been investigated for dissimilar isotropic media (He and Hutchinson, 1989; Mukai et al., 1990)
and for dissimilar anisotropic media (Miller and Stock, 1989). In contrast, the kinking of a crack
in a homogeneous isotropic medium has been investigated at least since the 1970’s (e.g. Lo, 1978).
The case of a kinked crack in a homogeneous anisotropic material can be found in the com-
paratively recent work of Obata et al. (1989).

The above-mentioned works on crack kinking focus on a single crack. A voluminous amount
of work has been done for the interactions of straight cracks in two- and three-dimensional
homogeneous media, both infinite and finite. Multiple interfacial cracks also exist, for instance,
due to imperfect bonding at the interface (e.g. Kang, 1994). They can be found in metal-ceramic
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bonded joints, adhesive joints, electronic devices, and composite materials in general. Conse-
quently, quantitative predictions of their interactions and possible kinking is of great importance
in the understanding of the degradation of materials or structural function. Attempts have been
made towards the analysis of the interaction between straight interfacial cracks (e.g. Zhao and
Chen, 1994) and between a straight interfacial crack and a straight subinterfacial crack (e.g. Isida
and Noguchi, 1994; Zhao and Chen, 1995). To the best knowledge of the authors, investigations
on the interactions of interfacial kinked cracks have not been carried out, however. Recently, Niu
and Wu (1997) attempted the study of the interactions of kinked, branched and zigzag cracks in
homogeneous isotropic media subjected to remote tension.

There has also been a great deal of interest in the appropriate fracture criteria for predicting
kinking out of an interface. He and Hutchinson (1989) used the maximum energy release rate
criterion. Miller and Stock (1989) considered the maximum mode I stress intensity factor (SIF)
criterion. Similarly, Yuuki et al. (1994) considered the maximum hoop stress criterion. Kang
(1994) compared the predictions of the maximum energy release rate, the maximum hoop stress
and the zero mode II SIF criteria with experimental data. All these works considered a single
crack. It is thus of theoretical and practical importance to investigate whether the predictions of
the different criteria can be affected by the interactions between multiple kinked cracks on the
interface.

This paper investigates the interactions of kinked interfacial cracks lying between two dissimilar
infinite isotropic media subjected to remote tension. For simplicity, two cracks, not necessarily
equal, are considered. The plane strain condition is assumed. The objectives are to (i) understand
the influence of strong interactions and crack configuration asymmetry on the stress intensity
factors, the energy release rate and the kink angle, and (ii) study how these factors influence the
differences in the kink angle and critical stress predictions of two different fracture criteria. These
are the practical contributions of the present work. The analytical technique makes use of the
dislocation modeling of kinks in the manner of Lo (1978), as is the case in He and Hutchinson
(1989), Obata et al. (1989), Mukai et al. (1990), and Niu and Wu (1997). The technique for treating
interfacial boundary conditions follows that of England (1965) and Clements (1971), as is the case
in Mukai et al. (1990). The theoretical contribution of the present work is to generalize the single
interfacial kinked crack model to a model for two interfacial kinked cracks using the method of
dislocations, and to emphasize that the key element responsible for the success of the method is
the exact satisfaction of the boundary conditions by all the interfacial parts of the kinked cracks.

The problem is formulated in Section 2, and the potential function solutions are provided in
Section 3. The integral equations associated with the kinks are developed in Section 4. Numerical
results are presented in Section 5, and the conclusions in Section 6.

2. Formulation
2.1. Problem statement

Figure 1(a) shows an infinite body of two dissimilar isotropic media bonded along a straight
interface L+ L’ except at the two crack locations, where L is the union of the cracks and L’ the
union of the bonded segments. The elastic constants of the upper and lower media S, and S, are,
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Fig. 1. Schematic of the superposition technique for solving the problem of multiple kinked interfacial cracks in a bi-
material.

respectively, pu;, k; and u,, x,, where y; is the shear modulus and «; is related to the Poisson’s ratio
v; by k; = 3—4v, (j = 1, 2) in plane strain. Denote also L" as the union of the two straight kinks in
S;. A rectangular frame x—y is attached to the body with the x-axis lying along the interface. The
interfacial parts of the cracks, or the main cracks for brevity, have their tips located at x = a,, a»,
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as and a,, where a, > a; > a, > a,. The lengths of the main cracks, labelled 1 and 2, are denoted
by 2¢, = a,—a, and 2¢, = a,— as, respectively. The kinks 1 and 2 have the lengths /,, [, and the
angles 0,, 0,, respectively. The angles are measured positive counterclockwise from the x-direction.

The body is subjected to the remote stresses o}, 67+, 67, and 7, under plane strain. The objective

V
is to compute the stress intensity factors (SIFs) and the energy release rate of the kinks.

2.2. Boundary conditions

The remote boundary conditions are specified by the remote stresses ¢}, and ¢}. The x-direction
stresses are related to o)) (see Appendix A). On the interface, the stress ¢,,—i0,, and displacement
gradient ¥’ + iv” boundary conditions, where i = ./ — 1, are:

(6,,—i0,,),—(0,,—i0,.), =0 onL+L, (1)

(0,,—i0,.), =(0,,—io,), =0 onlL, 2)
and

w+iv), —Ww+iv), =0 onl, 3)

where the subscripts 1 and 2 refer to S, and S,, respectively. The prime on the displacement u or v
denotes the derivative with respect to x. For the kinks, the stress boundary condition is:

Oyy

—io,, =0 onlL’, 4)

where x’—)” refers to the local reference frame of either kink.

2.3. Superposition scheme to satisfy boundary conditions

To solve the problem in Section 2.1 subjected to the boundary conditions in Section 2.2, the
superposition scheme illustrated in Fig. 1 is used. Figure 1(b) shows the replacement of the two
kinks by two initially unknown distributions of infinitesimal edge dislocations. Figure 1(c) shows
the decomposition of Fig. 1(b) into three problems each with its associated problem. In Problem
1, the uncracked bi-material solid is subjected to the remote stresses. In Problems 2 and 3, the
uncracked body is internally stressed by the dislocations of kinks 1 and 2, respectively. Stresses
are induced at the trace of the imaginary main cracks in these problems. In the associated problems,
the interfacial main cracks are subjected to the negative of the induced stresses.

Superposition of the three problems and the associated problems ensures that the main cracks
are traction free, i.e. (2) is satisfied. Moreover, (1) and (3) are satisfied in each of the six problems
so that they are also satisfied after superposition. The remote boundary conditions are satisfied in
Problem 1, and consequently no stresses should be induced at infinity in the other five problems.
The potential functions in all six problems can be derived, and it remains to ensure that the kinks
are traction free, see (4). The stresses on the trace of the kinks in the six problems are derived from
the potentials, and setting the sum of these stresses to zero yields a system of singular integral
equations containing the dislocation densities as unknown functions.
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3. Potential functions

The stress and displacement fields in an infinite isotropic body can be derived from the well-
known complex potentials ®,(z) and ¥,(z) of Muskhelishvili (1953):

(0,,—i0,,); = ©;(2) + ©;(2) +z@7(2) + ¥,(2), %)
(0 +0,,),; = 2[D;(2) + D,(2)], (6)
(u+iv); = 2L |:K‘,- f ®,(z)dz— Jz ¥,(2) dz—z(Dj(z)], (7)

where the subscript j = 1, 2 identifies the region S, and z = x4 iy is the complex variable. Also, z,
®,(z) and P/(z) are the complex conjugates of z, ®,(z) and W,(z), respectively, while ¥,(z) = ¥,(2).
The prime denotes differentiation with respect to the argument of the potential. In view of (3), (7)
is differentiated with respect to x:

(' +iv'), = 2L [1,®,(2) — &,(2) —20/(2) — ¥, (7). (8)

Following England (1965), Clements (1971) and Mukai et al. (1990), the analytic potentials
Qg(2) = Qg(z) and Q,(2) = Qp(z) where z€ S, are defined in the entire region § = S,+S,. Also,
Qg (z) and Q,,(z) are analytic in their respective regions. Letting j, ke {1,2} but j # k, these
potentials can be defined succintly as:

QSj(Z) = (D_/(Z) - [(T)_/(Z) +Z&);\'(Z) _|_\le(2)] ze s, O
Qp(z) = ,ul ®, (Z)+ : [(D,((z)—i—zd)k(z) +%(2)] zeS,. (10)

The conditions of stress jump (o,,—io,.),—(0,,—i0,,); and displacement gradient jump
(w'+iv),— (' +iv’), at the interface can then be conveniently expressed as Qg (x) — Qg (x) and
Q- (x) —Qpi(x), respectively. In the associated problems, these conditions on the main cracks
correspond to Hilbert’s problems which can be solved using the method given in Muskhelishvili
(1953). The solutions Qg;(z) and €,,(z) can then be used to determine ®,(z) and ¥,(z) by inverting
(9) and (10):

®,(2) = Q,[ Qs,(z>+szuj(z)} z€S), (11)

¥i(2) = Qk|: QSk(Z)+QDk(Z):| D(2) —z®j(2) z€S,, (12)

where Q; = 2u;u,/(1;,+x;u;). The potentials of the three uncracked problems, i.e. (9 (z), ¥} (2))
associated with the remote loading, and (®; (z), W;(z)) associated with the internal loading of the
dislocations, are available in the literature and are listed in Appendix A for completeness. The
potentials of the associated problems, distinguished by carets, ie. (®7(2), ‘f’_f’ (2)), (D (2),
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Fl(2), (Q%(2), QF(2)) and (Q3(2), Q,(2)) are derived as the solutions of Hilbert’s problems in
the following sub-sections.

It is emphasized that the key element responsible for the success of the present approach is the
exact satisfaction of the boundary conditions on all main cracks. When the main cracks are very
close to each other, it is extremely difficult to satisfy their boundary conditions and hence obtain
an accurate estimate of the SIFs in the case of strong interaction. Attempts to describe the very
strong interaction by approximate functions such as a series of orthogonal polynomials have met
with limited success. Thus, the theoretical contribution to this work is the derivation and solution
of the associated problems in such a manner that the exact satisfaction of all main crack boundary

conditions under the remote or dislocation loading is guaranteed a priori.

3.1. Associated Problem 1

The potentials of Problem 1 are given in Appendix A. In Associated Problem 1 (Fig. 1(c)), the
boundary conditions are the same as the overall boundary conditions given in (1)—(3), except that
(2) should be replaced by (¢,,—i0,,); =(0,,—i0,,), = —f"(x) = —(6);,—i0,;) on L. In terms of
(Q?, (2), QE‘,—(Z)), the present boundary conditions can be rewritten as:

QL (x)—Q5(x) =0 onL+1L, (13)

200 Ao o + o\ — (O-;’/Ja_lo-vxz

Gp1(x)+mQp, (x) =(Qp) " (x) +m(Qp) ™ (x) = _T onlL, (14)
1

Q5 (x) - Q% (x) =0 onL, (15)

where m = Q,/Q, =(1+f)/(1—p). The superscripts “+” and “—"" indicate the values of the
quantities as they approach the interface from within the S, and S, regions, respectively. Since
Q% (z) is analytic and bounded everywhere, it must be equal to a constant by Liouville’s theorem.
Since the stresses vanish at infinity in this associated problem, the solution to (13) is Q% (z) = 0.
Note also that (14) is derived by substituting (11) and (12) into (5) and using the solution to (13).

The solution to the non-homogeneous Hilbert’s problem as defined by (14) and (15) are (see
Muskhelishvili, 1953):

1 X" ) (=/"x)/0)) P~ (2)
L X—z dx+ X))’

(16)

where 1/X(z) is the solution to the homogeneous problem [(14) with zero on the right-hand side].
Also, P*(z) = CYz+ C% is a polynomial of the first degree in z, since X(z) has the degree 2 at
infinity [see (27) below] and the stresses must vanish at infinity. Using the method described in
Muskhelishvili (1953), X(z) is found to be

(z—az)(z—a4)}"7’ (17)

X(z) = \/(z—al)(2—a2)(2_a3)(2_a4) |:(Z—(11)(Z_a3)

where n = logm/(2n). Equation (17) is given in Erdogan (1965) for an arbitrary number of
interfacial cracks. Expanding X(z) about the point at infinity in decreasing powers of z yields:
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X(z)=ZZ+A12+A2+O<;>zh(z)+0<l>, (18)
where

A== +a2;“3+a“ +ilay +ay—a,—ay)n, (19)

A, — (@ +a>+as+a,)’ —2(ai+a3+ai+ai)  (a—ar+as—ay)’ 4 i(dads —raon.

8 2
(20)
Equation (17) is substituted into (16). Using the integration technique described in Muskhelishvili

(1953), the line integral over L is replaced by a contour integral on I', where I' is the union of the
contours around cracks 1 and 2. Also, since 1/X(z) is the solution to the homogeneous Hilbert’s

problem, 1/X*(x) = —m/X (x). This is made use of when I'" is shrunk onto the upper and lower
faces of the cracks. The following is obtained after the above operations:
~ 1 —(or —io), X(o C¥z+CY
QODO (Z) — : (O-)fy lO"‘,x (Y) dx+ 1 z+ 2 ,
2ni(1+m)X(2) 0, rx—z X(2)
1 —(O’;;—iO’;i)) 5 Crz+C7y
= X@)—C+Az4+M)]+——~—,
= Oy ZO-,L z - + E (Z) ’ (21)
0,(1+m) \ X(2) X(z)

where the contour integral of X(x)/(x—z) around I'" equals 27i(X(z) —h(z)) and h(z) is given in
(18). Also, the polynomial

PP (z) = EYz+EY (22)
combines P*(z) of (16) with other terms that arise from the integrations, and for p = 1, 2
A, (0}, —i0}y)

Q,(1+m)

Converting QF (z) = 0 and (21) back to the Muskhelisvili potentials by the use of (11) and (12),
the following expressions are obtained:

Ef=Cr+ (23)

s _omt (7 Q,P% ()

O = (A +m) o, —io <X(z) —1>+ 7X(z) , (24)
Co _mk*l w1 w z? OPr(2) P s

le (2) = 1+m Oy 10, <X(Z) _1>+ X(Z) _CD_/' (Z)_Z(Dj (2), (25)

where as before j, ke {1,2} but j # k. To determine the complex constants EY and ES of P% (z),
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the uniqueness of displacement around each main crack yields two equations in the two constants.
Consider the contour I',, n = 1,2, around each main crack. Using (7), the uniqueness of dis-
placement around each main crack can be expressed as:

DA 1 = 1 =
du+iv) = ~Ldr()dz—¢ ~— PrE)dz—@ ——d(br(2)) = 0. (26)
r, T, 20 T2 r, 24,
Equation (26) can be replaced by line integrals in the intervals [a,, a,] for n = 1 and [a3, a,] for
n =2 if I, is shrunk onto the crack faces. Noting that 1/X* = —m/X~(x) and z = z = x on the
crack faces, and that the upper part of I, is in .S, while the lower part of I',, is in S,, (26) reduces
to:

jy(: —7 33( arp 2 arp E% + EOO
Ty 1%, Cdv+0, | T =0, 7
I+m |, X*(x) ) X' (x)

12n—1

In deriving the above equation, the relation (x, —m)/2u, + (1 —mk,)/2u, = 0 has been used. The
solutions are:

E;O =(_1)q O'jj,—l.()'f\' Bzzqu_Blszq i (28)
(14+m)Q, \ B, By — B, B
where ¢ = p— 1. The complex integrals B, (s = 0, 1, 2) are given by:
- | 29)
arp—1 X (x)

These integrals are computed numerically by Gaussian—Jacobi quadrature. Equations (24)—(25)
with (28)—(29) are the complete solutions to Associated Problem 1.

3.2. Associated Problem 2 or 3

For Problem 2 or 3, the potentials ®;(z) and W7 (z) due to an edge dislocation at z, in S, are
listed in Appendix A. In Associated Problem 2 or 3 (see Fig. 1(c)), the boundary conditions are
the same as (13)—(15), except that —f“(x) = — (0}, —io,;) on the right side of (14) should be
replaced by the negative of the stresses due to a single dislocation, i.e.:

Lo I+oa 1 I4+o 1 7 l+a zy—z,
) = A<1_ﬂx_20+1+ﬁx_zo> A<1+ﬁ(x_zo)2>, (30)

where 4 = w, e”{[u,] + i[u]} /in(ic, + 1) characterizes the edge dislocation; e is the exponential, (r, )
the usual polar coordinates, and [u,], [¢y] the displacement jumps in the radial and tangential
directions. Also, o and f are the Dundurs constants (see Appendix A). Equation (30) is obtained
by substituting ®@;(z) and ¥; (z) into (5) and adding the negative sign. Note that in Fig. 1(c) /*(x)
denotes the stresses due to the dislocation distribution rather than a single dislocation. The
solutions to the Hilbert’s problems as derived from the boundary conditions are then Q& (z) = 0
and
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Q5(2) =

1 J Y=/ /0 N P(2) (31)

2miX(2) |, x—z T XG>

where P*(z) = Ciz+ Cy, and X(z) is the same as that given in (17). Substituting (30) into (31),
the resulting integrals can be replaced by contour integrals in a manner similar to the replacement
of (16) by (21). The contour integrals are evaluated, and the final result for Qz(z) is:

A =24 [l+4u 1+a
Qp(2) = (1+m)0, < _ﬁF(Z s Z0) + +ﬁF(Z Zo))
24 (1 _ .\ P}
-4 +m)Q1< o ZO)G(z,z0)>+ e
where
Pi(z) = Etz+Ex (33)

combines the polynomial P*(z) of (31) with other terms that arise from the integrations, and

El—Clt 24 l+o

Y (+m)0, 1—p 34

1+ A 14+«
(zo+A))+ 1+ﬁ(ZO+A )) (1+m)0, <1+ﬂ\zo Zo)) (35)

In (35), A, is given in (19). Furthermore,

Ey =Cr+

A <1+oc
(1+m)Q, B

Flz.20) = 1 X (36)
YT (z—zy)  2(z—2z) X(2)°
— F(z,z) 1 1 X))/ 1
Gz 20) = aZo 2(2 20)2 2(2—20) X(2) < +W(ZO)> 7
where
S R | — 1)
W(ZO)=§ ; —a, +m(Z1 o ) (38)

Note that W(z,) arises from the differentiation of X(z,), i.e. d [X(zy)]/dzy = W(z0) X (20).
Converting Qg (z) = 0 and (32) back to the Muskhelishvili potentials by the use of (11) and (12),
the following expressions are obtained:
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—2A4 /1 1+ Z/T 1
B10) = o (1 ez = 4 a0+ 0 5
(39)
PHE) + i) = —2nd (”“m Z+ A FC, z@)
1= p 8
2mA 1+« E( ?)
—mm( Zo)G(Z 20)+ 0 —— X0 (40)
bi(2) = mbt(2), 1)
Pi)+ i) = [‘Pi(m Z(zcbf(z))} “2)

Two sets of complex constants £ and E> can be determined for Pz (z). The first set (E1', E>")
corresponds to the location of z, on the kink associated with crack 1 (Problem 2), while the second
set (E1?, Ex?) to the location of z, on the kink associated with crack 2 (Problem 3). As in (26),
d(u+iv) is integrated around two contours, resulting in two equations.

To determine (E1', E>"), the contour I'; encloses main crack 1 and the trace of the associated
kink, including the dislocation at z, on the trace, while the contour I', encloses main crack 2 only.
Taking steps similar to those leading to (27), I', is shrunk onto the faces of main crack 1 and the
associated kink, while I', is shrunk onto the faces of main crack 2. The integration around the
trace of the kink is zero since all the integrands are analytic on the kink including at z,. If the
integrations stated in (26) are carried out using the potentials of (39)—(42), the following is
obtained:

A |14+« @ 1 140 —
mQ, [l—ﬁ o) J Y )z T 1 p )

J 1 . } A 1+ ) [ J | .
X ————————ax — ——\Zy—Z Z ————————ax
iy X T (X)(x—20) mQy 1+470 T | X () (x—2,)?

o as, 1 1 as, as, 1
—l—W(ZO)J dx]—i-—m(El“J al dx—i—EflJ dx)
A2n—1 X+ (x)(x_zo) m a2n—1 X+(x) Aap—1 X+(x)

Armi(k, + Dy, forn=1,
o forn =2,

(43)

where n = 1, 2 identifies the contour I',, and Ani(ic,+1)/u, = €” ([u,] +i[uy]) is the dislocation
content within I';. To determine E12, E52, an equation similar to (43) can be obtained, with the
difference that I, encloses main crack 1 and has no net dislocation content whereas I', encloses
main crack 2 and the dislocation at z, on the trace of the associated kink. Defining N = n+ (—1)"""
and recalling that ¢ = p—1, the explicit forms for the two sets of parameters are:
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Ein — (=1 |:(_1)n+l m Ani(K1+1)B

! BBy — By B>, 1+m 15 N

A 1+a

T T A (1+m)Q, 1— ﬁ[quDzl(Zo) qu 11(20)1X(20)
A l1+a

T Aemo. (1+m)0, 1+ﬁ[quD21(ZO) By, Dy 1(29)]X(20)
A 1+« 5D B v

t T A (1+m)0, 1+ﬁ[ 1q 22(20) 2 12(20)](20 20) X (z9)
A l+a 3D 5D e e 44

ml"‘ﬁ[ 10D21(20) — B2y D11 (20)](20 — 29) X(20) (ZO):|7 (44)

where the complex integrals

as, 1
DI‘IS = —d 45
=0) L,,lﬁ(x)(x—z())f * (4

are evaluated numerically for s = 1, 2 by Gaussian—Jacobi quadrature. The integrals B, are given
in (29). Equations (39)—(42) with (44)—(45) are the complete solutions to Associated Problem 2 or
3. Equations (30)—(45) have been derived on the assumption that z,€ S,. When z,€ S,, it is only
necessary to replace (o, ) by (—a, —f5) in these equations, and to replace Ani(xc;+ 1)/u; in (43)—
(44) by Ami(x,+ 1)/u,. The exception is that the sign of ff in m = (14 f)/(1 —f) is not changed.

For a distribution of dislocations, 4 is interpreted as a dislocation density and the corresponding
solutions can be obtained by integrating the solutions for a single dislocation over the positions
occupied by the dislocation group.

4. Integral equations, stress intensity factors and energy release rate

To satisfy (4), the normal and shear stresses at the kink locations in all problems are super-
imposed and set equal to zero. Figure 1 can be used as an example, in which a kink is joined to
the inner tip of each interfacial crack. Let z; and z, denote the positions along kinks 1 and 2,
respectively, and similarly z,; and z,, the positions of the dislocations on kinks 1 and 2. If # denotes
the position along either kink with origin at the kink knee, then the superimposition of the stresses
results in the following two complex, or four real, integral equations forn = 1, 2:

h
J\ [6é9(2117 ZOI)+ io—rL('?(Zm ZOI)+O¢$H(Zna ZOI)_{—iGArJ@(Zm ZOI)] dl
0

ly
+J‘ [O-OLO(ZVH ZOZ) + igrio(zn’ ZOZ) + 6-30(211’ ZOZ) + id—rl()(zna ZOZ)] dt
0

+ [O-;%(Zn) + 16/35 (Zn) + 69é(zll) + 104713 (Zn)] = O (46)
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The superscripts on the stress components indicate the potential functions from which they should
be computed. The three sets of rectangular brackets correspond to Problems 2, 3 and 1, respectively.
The last two terms within each set of brackets correspond to the associated problem. It can be
easily verified that the equations are of the singular Cauchy type and the two unknown functions
are the dislocation densities in kinks 1 and 2,1.e. 4,,n =1, 2.

Equation (46) is solved by the method of piecewise polynomials (Gerasoulis, 1982). The method
has been used for solving kinked crack problems (He and Hutchinson, 1989; Obata et al., 1989;
Mukai et al., 1990; Niu and Wu, 1997). Essentially, each dislocation density 4,(¢') is written as
the product of a weight function w(¢") and a regular function ¢,(¢"), where '(—1 < ¢ < 1) describes
the normalized position along either kink. The values ' = 1 and ¢ = — 1 denote positions at the
kink tip and the kink knee, respectively. Additional conditions ¢,(—1) = 0 are used to solve the
problem. Dividing the normalized interval [— 1, 1] into R intervals, the use of R collocation points
within the intervals generates R linear algebraic equations for each integral equation. Together
with the additional conditions, a system of 4(R+ 1) linear algebraic equations is obtained with
@,(t") at the boundary points of the R intervals as unknowns.

After solving the algebraic equations, the mode I and mode II SIFs (K, K;) of kink n are easily
calculated from the stress field around the kink tip. The formula is (see also Lo, 1978):

Ki+iKy =(m)*?(20) "7 e, (1), (47)

where 6, is the orientation of the kink. The energy release rate under the plane strain condition is
given by the classical formula
_I+x

G=—"2K+K3D). (48)
8u;

]

To compare the numerical results with previously published results, (48) is normalized by the
energy release rate G, at the tip of an equivalent straight interfacial crack of total length 2¢” = 2¢+ 1.
The expression for G, is (see, ¢.g. Malyshev and Salganik, 1965):

G 141, +1+x2 (1+4n")[(0}5)* + (072) ]nc’
’ 8y 81, 2 cosh?(ny) '

(49)

5. Numerical results

A remote tensile stress ¢ is applied in the direction perpendicular to the main cracks. More
complicated loadings involving remote shear and tension are not considered; the objective is to
show that even under remote tension complex phenomena exist due to crack interactions.

The geometrical parameters 2¢, [/ and 2d denote, respectively, the length of the main crack, the
length of the kink, and the distance between the inner tips of the main cracks. A distance parameter
0 =(d—1)/(2c+d) is used to characterize the interaction. Unless otherwise stated, the two cracks
are arranged symmetrically about the y-axis. When the cracks are unequal, subscripts are used to
distinguish between them, e.g. 2¢,, 2¢,, etc.

All numerical integrations are performed with the 50-point Gaussian—Jacobi quadrature
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Table 1.

Stress intensity factors, K; = K,/ /n(c+1/2), of two interacting straight cracks in a homogeneous material with no
interface. The approximate solutions are obtained by treating the light parts of the straight cracks as dislocation
distributions. The solutions improve with an increase in R, i.e. the number of collocation points used to solve the
governing integral equations

Exact

solutions c/l=1 ¢/l =100

Erdogan
o0=1[(d-1)]Q2c+d)] (1962) R=16 R =064 R =128 R=16 R =064 R =128
0.0001 13.347 5.315 8.592 10.368 13.080 13.300 13.318
0.001 5.395 4.375 5.204 5.331 5.367 5.382 5.384
0.01 2.372 2.349 2.370 2.371 2.362 2.367 2.368
0.02 1.905 1.898 1.904 1.904 1.897 1.901 1.902
0.05 1.473 1.471 1.472 1.473 1.467 1.471 1.471
0.1 1.255 1.254 1.255 1.255 1.250 1.253 1.254
0.2 1.112 1.111 1.112 1.112 1.108 1.111 1.111
0.99 1.000 0.999 1.000 1.000 0.996 0.999 0.999

formula. All solutions of the integral equations, except for some results in Section 5.1.1 below, are
generated with R in the range 64 < R < 240.

5.1. Test cases

5.1.1. Two interacting straight cracks in an isotropic homogeneous solid

The SIF solutions for two identical straight cracks each joined by a “kink” of 0 or 180° angle in
an isotropic homogeneous solid are compared to the exact solutions of Erdogan (1962). The
comparison is shown in Table 1, which contains three sets of normalized K; solutions for various
crack separations: (i) the exact solutions obtained by treating each crack as an uninterrupted
straight crack, (ii) the approximate solutions obtained by treating each crack as a main crack
joined by a kink with ¢/l =1, and (iii) the approximate solutions obtained as in (ii) but with
¢/l = 100. The approximate solutions, obtained using k, = k,, i; = 4, and R = 16, 64, 128, agree
well with the exact solutions. The errors are less than 1% when 9 is greater than or equal to 0.01.
For 6 = 0.001 and 0.0001, the approximate solutions tend towards the exact solutions of 5.395
and 13.347 (in three decimal places) as R increases. The best approximate solution of 13.318 for
0 = 0.0001, computed using ¢// = 100 and R = 128, represents an error of approximately 0.2%.
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The comparison shows that the kinked interfacial crack model, when specialized for the case of
strongly interacting straight cracks in an isotropic homogeneous solid, produces accurate SIFs.
The accuracy is excellent provided R is sufficiently large. When the kink angles are not zero, the
current model predictions agree with the results of Lo (1978) for a single kinked crack and also
those of Niu and Wu (1997) for two strongly interacting kinked cracks.

5.1.2. Two kinked interfacial cracks located at a large distance from each other

When there exists an interface separating two materials, the current results agree with those
presented in Mukai et al. (1990) for a single kinked interfacial crack. An example is provided here
in which two identical kinked cracks are separated by a very large distance (6 = 1-10~°). Figure 2
plots the normalized energy release rate G = G/G, vs the kink angle 0 for //c = 0.001 and various
values of «, f. Also plotted is G vs 0 for o = 0.5, f = 0.14286 and //c = 0.001, 0.01, 0.1, 1. The
symbols in the figure indicate the results of Mukai et al. (1990), while the full lines indicate the
current model predictions. The two sets of results agree well.

5.2. Symmetric configuration

Consider two identical kinked interfacial cracks located symmetrically about the y-axis. The
kinks are infinitesimally small compared to the main cracks. The parameters used are
oy = Mo/ = 3,100, v, = v, = 0.3. These correspond to (¢, f) = 0.5, 0.14286 and (o, §) = 0.98020,
0.280006, respectively. Also, //c = 0.001 and 6 = 0.99, 0.1, 0.01, 0.001, 0.0001. Since u, > u,, S, and
S, are for convenience called “stiff”” and “compliant” materials. The SIFs are normalized, i.e.
K = Kl/af}‘,\/nic’ , Ky = Ky/o),</mc’. Due to symmetry, it is sufficient to plot the SIFs and the
energy release rate of kink 1. The mode mixity is defined as y = tan~' (Ky;/K;). Results for kinks
almost parallel to the interface are omitted due to numerical inaccuracies.

5.2.1. Effect of interaction on SIFs, energy release rate, mode mixity and critical kink angle
Figure 3 plots K;, K;; and G vs the kink angle 0 for u,, = 3. As expected, they generally increase in
magnitude as & decreases. Local maxima of the K—0 curves exist for positive 0, i.e. in the compliant
material S,. These local K; maxima are, however, less than the maximum values of K| in the stiff
material S,. In contrast, the G values in S,, which also display maxima, are greater than the
maximum G values in S,. The K;—0 curves possess zeroes in S,. Assuming for the time being that
the cracks kink into the compliant material, then the critical kink angle 0.., whether predicted by
the local maximum K; criterion, the maximum G criterion or the K;; = 0 criterion, decreases with
increase in 1/6. Figure 4 shows that as 1/0 increases through four orders of magnitude, 0., decreases
from ~35-~10° for u,, = 3, and from ~ 55—~ 15° for u,, = 100. Furthermore, the variations of
the mode mixity y with 0 and ¢ are also shown in Fig. 5 for u,, = 3. If the kinks are in S, and the
interaction increases at a given kink angle, the mode mixity increases towards mode I (y = 0°) if
the kink angle is small (< ~30°), but increases towards node II (y = 90°) if the kink angle is large
(> ~30°). When the kinks are in S,, an increase in interaction leads to the increase of the mode
mixity towards mode I.

The first implication is that interaction between the interfacial cracks reduces the critical kink
angle. This result is intuitive since the attraction between the interfacial crack reduces the tendency
to kink out of plane. The tendency to kink, however, is stronger than the tendency for the interfacial
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Fig. 2. Comparison of the energy release rates computed using a single crack model and a crack interaction model.

cracks to join each other along the interface, since finite critical kink angles are predicted even
when the interfacial crack tips are separated by a distance as small as 2d = 0.0024¢ (6 = 0.0001).
The second implication is that the critical kink angle predictions of all three criteria agree to within
ten degrees and interaction does not cause significant differences between the predictions. Finally,
the interaction may have opposite effects on the mode mixity in the compliant and stiff materials.
It increases the mode I mixity in the stiff material, but reduced it in the compliant material if the
kink angle is sufficiently large.
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Fig. 3. Dependence of the SIFs and the energy release rate on the distance parameter ¢ of two kinked interfacial cracks
which are symmetric about the y-axis.
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5.2.2. Consideration of fracture toughness
It is necessary to consider the fracture toughness of both materials and the interface. Since the
materials are isotropic, the critical energy release rate, G, is related to the critical mode I SIF, K¢
(plane strain fracture toughness), by G = Ki-(1 —v?)/E for each material, where E and v are,

257

Fig. 4. Decrease of the critical angle with increase in interaction strength, assuming that kinking occurs in the compliant
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Fig. 5. Influence of the interaction strength on the mode mixity of a kink in the two parts of the bi-material.

respectively, the Young’s modulus and the Poisson’s ratio. Kinking into S, is unlikely to occur
compared to kinking into S, or interfacial fracture if the following equation is satisfied:

KImax,Z > KIC,2 GmaX,Z - GC,Z
s ’
Klmax, 1 KIC, 1 Gmax, 1 GC, 1

where Kja.o/Kimax, and Kic,/Kic; denote, respectively, the ratio of the maximum mode I SIFs
and the ratio of the plane strain fracture toughnesses of the two materials, and the ratios Gy, »/Gmax.1
and Gc,/Gc¢, are similarly defined. To simplify the discussion, it is assumed that the interface is at
least as tough as the less tough material.

The maximum K criterion has been regarded as a possible method for predicting the fracture
angles of interfacial cracks (Miller and Stock, 1989). So has the maximum G criterion (He and
Hutchinson, 1989). It is useful to compare the predictions of both criteria and to investigate if
interaction can lead to discrepancies in the predictions. For this purpose consider the case of
Kico/Kic, = 100 MPa m'?/70 MPa m'? = 1.43 and u,, = 80.7 GPa/26.9 GPa = 3 (e.g. an alumi-
num-—nickel or aluminum-steel bi-material). Assuming that the Poisson’s ratios of the metals are
0.3, the corresponding ratio G¢,/G¢, = 43.3 kJm ?/63.7 kJm > = 0.68.

Making use of Fig. 3 in which p,, = 3, Fig. 6 plots Kinax s/ Kimax.1 a0d Grayo/Gmax as a function
of logy,(1/6). The values of K, .., and G, are estimated from the values at 0 ~ 0°. It can be
seen that 1.35 < Kjuo/Kimaxa < 1.55 due to interaction. If Kjc,/Kc, falls within the range of
Kimaxo/ Kimax.1» Whether the crack extends by kinking into S or S, or by self-similar growth depends
on the interaction strength. In the present case of Kic,/Kic; = 1.43, Kinaxo/Kimax 18 smaller
than Kjc,/Kic, for log,o(1/0) < ~1.25 but larger than Kjc,/Kic,; for logo(1/0) > ~ 1.25. Thus,
according to the maximum K; criterion weakly interacting cracks may kink into the compliant
material whereas strongly interacting cracks may either extend self-similarly or kink into the stiff

(50)
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Fig. 6. Variation of the ratio of the maximum mode I SIFs and the ratio of the maximum energy release rates in the two
materials with the interaction strength.

material instead. Since K, appears to reach its maximum in S, at the interface in the case of y,; = 3,
self-similar extension rather than kinking into S, is likely. The latter scenario may be possible,
however, if p,; assumes another value, since further results (not included here) indicate that K;
reaches its maximum at some non-zero angle in S, if u,; = 100.

Contrary to the results of Fig. 4, the maximum G and maximum K; criteria to not always agree
closely in the prediction of 0.,. In the example above, 0.75 < G .. 5/Gmax.1 < 0.85 due to interaction
(see Fig. 6). The ratio G¢,/G¢, = 0.68 is, however, always smaller than G, »/Gnax.1- Since G,y
occurs at 0 = 0°, the interfacial cracks tend to extend self-similarly irrespective of the interaction
strength. In other words, the maximum G criterion predicts 0., = 0° regardless of interaction, while
the maximum K criterion predicts 0., ~ 32° for weakly interacting cracks but 0., = 0° for strongly
interacting cracks. The upper plot of Fig. 7 summarizes the above discussion by plotting 0., as
predicted by the two criteria against log,;,(1/d). It is noted that even though the combination of
Gmax > Gmaxs and Kjc, > K¢ encourages kinking into the compliant material, this does not
occur according to the maximum G criterion since the smaller shear modulus of the compliant
material results in G¢; > Gc,.

The lower plot of Fig. 7 compares the critical remote “‘stresses’” (containing the factor W as
predicted by the two criteria. The maximum G criterion is satisfied at a lower critical stress than
the maximum K| criterion, whether the discrepancies in 0. are large or small. Further work
substantiated by experimental investigation, however, is necessary to answer the question as to
which of the two predictions is correct.

In general, the relevant parameters affecting the kinking behavior are many and may have
significant variability. For instance, the ranges of Kj,.x2/Kimax1 and Gy 2/Giax depend on the
Dundurs parameters and the crack configuration, and there can be significant variability of K. or
G due to differences in material microstructure (alloying elements, impurities) or material types
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Fig. 7. Effect of interaction on the critical angle and the critical stress predictions, and discrepancies between the

maximum K criterion and the maximum G criterion. The crack configuration is symmetric.

(metal-ceramic or other bi-materials). Considering the differences in material microstructure, the

range of K¢ for steel can be 50-170 MPa m'”. For aluminum the range can be 10-70 MPa m'",

1/2

Thus, Kic»/Kc, lies between 0.72 and 17, while G¢,/G, lies between 0.17 and 96.3. For the ranges
Of Kimax2/Kimaxa and G 5/Gax predicted, there will be material combinations such that kinking
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always occurs in the stiff or compliant material regardless of the interaction, or kinking may occur
in the stiff or compliant material depending on the interaction.

5.3. Asymmetric configuration

Consider two unequal kinked interfacial cracks located on either side of the y-axis. The par-
ameters considered are p,, = u,/u; = 3, 100, v, = v, = 0.3, and 6 = 0.99, 0.01, 0.001.

5.3.1. Unequal main cracks with equal kinks
The effect of unequal main cracks on equal kinks is examined. For this purpose, choose ¢,/c, = 5,
and /,/c, = I,/c, = 0.001. The main crack on the left (crack 1) is five times longer than the one on
the right (crack 2), although the kink lengths are the same. The kink angles satisfy the relation
0,40, = 180°, and the variable @ = 0, is used in the figures. Figure 8 plots K;, K;; and G vs 0 for
the case of u,; = 100 and 6 =(d—1)/(2¢c,+d) = 0.99, 0.01. The factor of non-dimensionalization
for the SIFs is 6,/ nc. For G it is Gy, given by (49) with ¢’ = ¢5.

In the compliant material, K; and G of kink 1 are generally greater than those of kink 2 for
0 =0.99 and 0.01. In the stiff material, although K, and G of kink 1 are greater than those of kink
2 for § = 0.99, they are smaller for 6 = 0.01. This represents an anomalous effect due to interaction,
and may have the following consequence. Suppose that (50) is satisfied whether the maximum K;
or the maximum G criterion is used, i.e. kinking into the compliant material S, is not likely. In the
case of very weak interaction, both criteria will then predict that kink extension from the long
main crack will occur parallel to the interface before a similar extension can occur from the short
main crack. The reverse occurs in the case of strong interaction, i.e. the short main crack will
extend first, contrary to intuition. The discussion here, however, is subjected to the restriction that
0,40, = 180°. A definite conclusion is possible only if a comprehensive search is carried out for
the combination of #, and 6, that yields the maximum K, or G.

5.3.2. Equal main cracks with unequal kinks
The extension of an infinitesimal kink in the presence of a finite kink is examined. For this purpose,
choose ¢,/c, = 1, 1,/¢, = 0.001, and /,/¢, = 0.1. Kink 1 is a hundred times shorter than kink 2. Also,
0, = 150° while 6, is allowed to vary between —90 and 90°. Figure 9 plots K;, K;; and G vs 0, for
the case of w,; =3 and 6 =(d—1))/(2c,+d) = 0.99, 0.01, 0.001. Unlike Fig. 8, the non-dimen-
sionalization factors consist of the length ¢;.

In contrast to the previous results, the interaction of the finite and infinitesimal kinks causes
complex shielding of the SIFs and the energy release rates. As ¢ decreases from 0.99—0.001, the
finite kink first experiences an increase in K; and G but subsequently a considerable decrease of
these parameters at 6 = 0.001. This implies that the shielding due to the finite kink dominates over
the amplification associated with a decrease in 0. Also, although the angle of the finite kink is held
fixed, K;, K;; and G of the finite kink all experience jumps in various degrees as the infinitesimal
kink crosses the material interface.

Consider next the infinitesimal kink. It is interesting to observe that the shielding of K; and G
of the infinitesimal kink is less than that of the considerably longer finite kink for almost all 0,.
Furthermore, the K; and G curves for the various values of § may intersect each other. The
maximum values of K; and G for 6 = 0.001 are smaller than the corresponding maximum values



262 M.S. Wu, H. Zhou | International Journal of Solids and Structures 36 (1999) 241-268

Kink 1 Kink 2
25.0 ———— s — 25.0 e ————r
V=V, = 03
S 200} €1/€ =3 1 200} ]
:N ‘ Il/c2 = 12/1':2 =0.001
+ i n,, = 100
F, 150 21 4 150} .
S
® 100} 4 100} .
8 X
N
>~ 50 5=0014 50} ]
M /—\ /‘\6: 0.01
/—\ B
00 s o 0 A AEIICCA S N ) My )
-120 90 60 -30 0 30 60 90 120 -120 -90 -60 -30 O 30 60 90 120
5.0 ————r ———— 20.0 ———— ———r
—_ 0.01
T oo 15.0
R 8= 0.99 — 8=09 ' |
+ 0.01
& 5ot { 100} -
B
8\0?‘ -10.0 } {1 50} 0.01/ ]
><= 150 L 1 oo 5 =099 ~ 8 =099
0.01
200 e N 5.0 e o
-120 90 -60 -30 0 30 60 90 120 -120 -90 -60 -30 O 30 60 90 120
40.0 ————r ———— 40.0 ————r ————
30.0 | { 300} :
S 0.01
N
B 200 { 200} ) .
10.0 | {1 100 001
" -0
LA . ' —2=0%

0.0 A L 0.0 L 2
-120 90 -60 -30 O 30 60 90 120 -120 -90 -60 -30 O 30 60 90 120

Kink Angle, 8 (Deg.)

Fig. 8. Dependence of the SIFs and the energy release rate on the distance parameter ¢ of two kinked interfacial cracks
containing unequal interfacial parts and equal kinks.

for 6 = 0.01, whether the infinitesimal kink is in S, or S,. Also, the maxima of K, and G'in S, occur
at increasingly larger 0, as ¢ decreases. These anomalies are not present in the symmetric case or
in the asymmetric case of Section 5.3.1.
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interfacial cracks containing equal interfacial parts and unequal kinks.
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The complex curves of Fig. 9 result in fracture predictions quite different from the symmetric
case. A most obvious difference is that it is possible for 0., to increase with 1/6 if the infinitesimal
kink extends into S;. Second, the critical stress to cause extension of the infinitesimal kink is lower
in the case of 6 = 0.01 compared to the case of 6 = 0.001, regardless of whether the kink extends
into S, or S,. Third, the finite kink generally experiences K; and G values smaller than the maxima
experienced by the infinitesimal kink, implying that the infinitesimal kink will extend before the
finite kink can do so.

When the fracture toughnesses are taken into account, there can be significant discrepancies
between the predictions of the maximum K; and the maximum G criterion. Using the same
parameters as in Section 5.2.2, i.e., Kjc»/Kic; = 1.43 and G¢,/Gc,; = 0.68, the predictions of the
critical angles and stresses are shown in Fig. 10. For the critical angles, the two criteria agree
approximately when ¢ = 0.01 and 0.001 and disagree entirely for 6 = 0.99 and 0.1. Unlike the
symmetric case, both criteria predict that the infinitesimal kink tends to leave the interface and
approach the finite kink when é = 0.01 and 0.001. For the critical stresses, the largest discrepancy,
which is of the order of 10%, also occurs at the larger values of §, i.e. 0.99 and 0.1. Similar to the
symmetric case, the stresses predicted by the maximum G criterion are smaller than those predicted
by the maximum K criterion.

6. Conclusions

A model for two strongly interacting kinked interfacial cracks lying between two dissimilar
isotropic materials is generalized from the previous model for a single crack. For two sets of
Dundurs parameters (corresponding to u,; = 3, 100, v, = v, = 0.3), a symmetric and an asymmetric
crack configuration under the plane strain conditions are studied. The focus is on the effect of
interaction on the stress intensity factors, the energy release rates, and the predictions of the kink
angles and the critical stresses using the maximum G and the maximum K| criteria. The remote
loading consists of a tensile stress normal to the material interface. Numerical examples are
given using the following fracture toughness ratio of the two materials: Kjc,/Kjc; = 1.43 and
correspondingly G¢,/Gc, = 0.68. The interface toughness is assumed to be at least as tough as the
less tough of the two materials.

For the symmetric crack configuration, the kink angle corresponding to maximum K; or G in
the compliant material decreases with interaction. For a kink of a given angle in the stiff material,
interaction increases the mode I mixity. In the compliant material, the general trend is for inter-
action to also increase the mode I mixity if the kink angles are small, but to reduce it if the kink
angles are large. When the crack configuration is asymmetric, strong interaction may introduce
complex effects. For instance, when an infinitesimal kink interacts with a finite kink, the angle of
the infinitesimal kink at which K| or G reaches its maximum in the compliant material increases
with interaction. Generally, the finite kink also experiences greater shiclding in both the stress
intensity factors and the energy release rate than the infinitesimal kink.

It is shown that interaction can change the kinking behavior completely, i.e. from kinking into
the compliant material to extending along the interface. These exist, however, discrepancies in the
predictions of the maximum G and the maximum K criteria. When there is no interaction or only
moderate interaction, the interface cracks in the symmetric configuration kink into the compliant
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Fig. 10. Effect of interaction on the critical angle and the critical stress predictions, and discrepancies between the
maximum K, criterion and the maximum G criterion. The asymmetric crack configuration consists of equal interfacial
parts and unequal kinks.
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material according to the maximum K, criterion while they remain in the interface according to
the maximum G criterion. For the asymmetric configuration consisting of equal main cracks, one
with an infinitesimal kink and the other a finite kink, a similar contradiction is predicted for the
crack with the infinitesimal kink. On the other hand, when strong interaction exists both criteria
predict that the kinks in the symmetric configuration stay in the interface, while the kink in the
asymmetric configuration leaves the interface to approach the other kink. In general, the details
of the discrepancies will be dependent on the crack configuration, the Dundurs parameters, and
the ratios of the fracture toughnesses.
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Appendix A

For Problem 1, the potentials ®;°(z) and ¥ (z) (j=1,2) due to the remote loading are
independent of position z. In view of (5) and (6), they can be written as:

0 0
_ O-y)’ + ax,\'l

o = PO, (AD)
py = 0% _20;21 t+io%, (A2)
oy =7 J;”ff“z IT:i o, (A3)
Yy = @ +io), (A4)

where « and f§ are Dundurs’ parameters:

(ki + D) = (k1) ﬁ_#z(Kl_l)_Hl(Kz_l) (AS)

(kD (e + 1)’ (e D)+ (e + 1)

In (A1)—(A4), it can be shown by continuity of the displacement gradient across the interface that
o is related to 6%, 1.e.:

45 —2u 1+«

Ovr = 1—o 0;}+1_a0?}1a (A6)

where it is further assumed that ¢, = —o%,. The above equation implies that the x-direction
stresses cannot be specified independently if constant potentials are assumed.
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For Problem 2 or 3, the potentials ®;(z) and ¥} (z) due to an edge dislocation at z, in S, can be
written as (see, e.g. Mukai et al., 1990):
A o= A o= Az —z)
+ — m——
—zo 1+pz—zy 14+ (z—2z,)>

L A Az, at+pf A d a—f A a—p A(zg—2z,)
v = "+ [z<l+ﬁ2_zo i ﬂ (A8)

i) = (A7)

—zy  (z—z)? 1=Bz—z, dz

1 A
R (49)
PN A(zg—z,) 14+a A d l+oa 4
¥ = 1+ (z—2z,)? 1+pz—z Cdz |:Z <l—ﬂ z—zo>:|’ (A10)

where 4 = w, e”{[u,] + i[uy]} /in(ic, + 1) characterizes the edge dislocation; e is the exponential, (r, )
the usual polar coordinates, and [u,], [¢y] the displacement jumps in the radial and tangential
directions. Also, the overhead bar denotes the complex conjugate.

References

Clements, D. L. (1971) A crack between dissimilar anisotropic media. International Journal of Engineering Science 9,
257-265.

England, A. H. (1965) A crack between dissimilar media. Journal of Applied Mechanics 32, 400-402.

Erdogan, F. (1962) On the stress distribution in plates with collinear cuts under arbitrary loads. Proceedings of the
Fourth U.S. National Congress of Applied Mechanics 1, 547-553.

Erdogan, F. (1965) Stress distribution in bonded dissimilar materials with cracks. Journal of Applied Mechanics 32, 403—
410.

Gerasoulis, A. (1982) The use of piecewise quadratic polynomials for the solution of singular integral equations of
Cauchy type. Computers and Mathematics with Applications 8, 15-22.

He, M. Y. and Hutchinson, J. W. (1989) Kinking of a crack out of an interface. Journal of Applied Mechanics 56, 270—
278.

Isida, M. and Noguchi, H. (1994) Distributed cracks and kinked cracks in bonded dissimilar half planes with an interface
crack. International Journal of Fracture 66, 313-337.

Kang, K. J. (1994) Criteria for kinking out of interface crack. Engineering Fracture Mechanics 49, 587-598.

Lo, K. K. (1978) Analysis of branched cracks. Journal of Applied Mechanics 45, 797-802.

Malyshev, B. M. and Salganik, R. L. (1965) The strength of adhesive joints using the theory of cracks. International
Journal of Fracture Mechanics 1, 114-118.

Miller, G. R. and Stock, W. L. (1989) Analysis of branched interface cracks between dissimilar anisotropic media.
Journal of Applied Mechanics 56, 844—849.

Mukai, D. J., Ballarini, R. and Miller, G. R. (1990) Analysis of branched interface cracks. Journal of Applied Mechanics
57, 887-893.

Muskhelishvili, N. I. (1953) Some Basic Problems of the Mathematical Theory of Elasticity. Noordhoff, Groningen.

Niu, J. and Wu, M. S. (1997) Strong interactions of morphologically complex cracks. Engineering Fracture Mechanics,
57, 665-687.

Obata, M., Nemat-Nasser, S. and Goto, Y. (1989) Branched cracks in anisotropic elastic solids. Journal of Applied
Mechanics 56, 858-864.

Raju, I. S. and Dattaguru, B. (1995) Review of methods for calculating fracture parameters for interface crack problems.



268 M.S. Wu, H. Zhou | International Journal of Solids and Structures 36 (1999) 241-268

In Computational Mechanics 95, ed. S. N. Atluri, G. Yagawa and T. A. Cruse, 2, 2020-2026. Springer-Verlag,
Hiedelberg.

Rice, J. R. and Sih, G. C. (1965) Plane problems of cracks in dissimilar media. Journal of Applied Mechanics 32, 418—
423.

Yuuki, R., Liu, J. Q., Xu, J. Q., Ohira, T. and Ono, T. (1994) Mixed mode fracture for an interface crack. Engineering
Fracture Mechanics 47, 367-377.

Williams, M. L. (1959) The stresses around a fault or crack in dissimilar media. Bulletin of the Seismological Society of
America. 49, 199-204.

Zhao, L. G. and Chen, Y. H. (1994) Interaction of multiple interface cracks. International Journal of Fracture 70, R53—
R62.

Zhao, L. G. and Chen, Y. H. (1995) Interaction between an interface crack and a parallel subinterface crack. International
Journal of Fracture 76, 279-291.



